Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioinformatics ; 38(Suppl 1): i325-i332, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35758801

ABSTRACT

MOTIVATION: During lead compound optimization, it is crucial to identify pathways where a drug-like compound is metabolized. Recently, machine learning-based methods have achieved inspiring progress to predict potential metabolic pathways for drug-like compounds. However, they neglect the knowledge that metabolic pathways are dependent on each other. Moreover, they are inadequate to elucidate why compounds participate in specific pathways. RESULTS: To address these issues, we propose a novel Multi-Label Graph Learning framework of Metabolic Pathway prediction boosted by pathway interdependence, called MLGL-MP, which contains a compound encoder, a pathway encoder and a multi-label predictor. The compound encoder learns compound embedding representations by graph neural networks. After constructing a pathway dependence graph by re-trained word embeddings and pathway co-occurrences, the pathway encoder learns pathway embeddings by graph convolutional networks. Moreover, after adapting the compound embedding space into the pathway embedding space, the multi-label predictor measures the proximity of two spaces to discriminate which pathways a compound participates in. The comparison with state-of-the-art methods on KEGG pathways demonstrates the superiority of our MLGL-MP. Also, the ablation studies reveal how its three components contribute to the model, including the pathway dependence, the adapter between compound embeddings and pathway embeddings, as well as the pre-training strategy. Furthermore, a case study illustrates the interpretability of MLGL-MP by indicating crucial substructures in a compound, which are significantly associated with the attending metabolic pathways. It is anticipated that this work can boost metabolic pathway predictions in drug discovery. AVAILABILITY AND IMPLEMENTATION: The code and data underlying this article are freely available at https://github.com/dubingxue/MLGL-MP.


Subject(s)
Machine Learning , Neural Networks, Computer , Drug Discovery , Metabolic Networks and Pathways , Software
2.
Brief Bioinform ; 23(1)2022 01 17.
Article in English | MEDLINE | ID: mdl-34695842

ABSTRACT

Drug-drug interactions (DDIs) are interactions with adverse effects on the body, manifested when two or more incompatible drugs are taken together. They can be caused by the chemical compositions of the drugs involved. We introduce gated message passing neural network (GMPNN), a message passing neural network which learns chemical substructures with different sizes and shapes from the molecular graph representations of drugs for DDI prediction between a pair of drugs. In GMPNN, edges are considered as gates which control the flow of message passing, and therefore delimiting the substructures in a learnable way. The final DDI prediction between a drug pair is based on the interactions between pairs of their (learned) substructures, each pair weighted by a relevance score to the final DDI prediction output. Our proposed method GMPNN-CS (i.e. GMPNN + prediction module) is evaluated on two real-world datasets, with competitive results on one, and improved performance on the other compared with previous methods. Source code is freely available at https://github.com/kanz76/GMPNN-CS.


Subject(s)
Drug-Related Side Effects and Adverse Reactions , Software , Drug Interactions , Humans , Neural Networks, Computer
3.
Brief Bioinform ; 22(6)2021 11 05.
Article in English | MEDLINE | ID: mdl-33951725

ABSTRACT

A major concern with co-administration of different drugs is the high risk of interference between their mechanisms of action, known as adverse drug-drug interactions (DDIs), which can cause serious injuries to the organism. Although several computational methods have been proposed for identifying potential adverse DDIs, there is still room for improvement. Existing methods are not explicitly based on the knowledge that DDIs are fundamentally caused by chemical substructure interactions instead of whole drugs' chemical structures. Furthermore, most of existing methods rely on manually engineered molecular representation, which is limited by the domain expert's knowledge.We propose substructure-substructure interaction-drug-drug interaction (SSI-DDI), a deep learning framework, which operates directly on the raw molecular graph representations of drugs for richer feature extraction; and, most importantly, breaks the DDI prediction task between two drugs down to identifying pairwise interactions between their respective substructures. SSI-DDI is evaluated on real-world data and improves DDI prediction performance compared to state-of-the-art methods. Source code is freely available at https://github.com/kanz76/SSI-DDI.


Subject(s)
Computational Biology , Drug Interactions , Neural Networks, Computer , Software , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL