Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Sci Transl Med ; 15(682): eabn5993, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36753561

ABSTRACT

Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.


Subject(s)
Malaria, Falciparum , Malaria , Child , Adult , Animals , Humans , Antigens, Protozoan , Cohort Studies , Merozoites , Antibodies, Protozoan , Plasmodium falciparum , Killer Cells, Natural
2.
Wellcome Open Res ; 4: 66, 2019.
Article in English | MEDLINE | ID: mdl-31223663

ABSTRACT

Background: Interventions to block malaria transmission from humans to mosquitoes are currently in development. To be successfully implemented, key populations need to be identified where the use of these transmission-blocking and/or reducing strategies will have greatest impact. Methods: We used data from a longitudinally monitored cohort of children from Kilifi county located along the Kenyan coast collected between 1998-2016 to describe the distribution and prevalence of gametocytaemia in relation to transmission intensity, time and age. Data from 2,223 children accounting for 9,134 person-years of follow-up assessed during cross-sectional surveys for asexual parasites and gametocytes were used in logistic regression models to identify factors predictive of gametocyte carriage in this cohort. Results: Our analysis showed that children 1-5 years of age were more likely to carry microscopically detectable gametocytes than their older counterparts. Carrying asexual parasites and recent episodes of clinical malaria were also strong predictors of gametocyte carriage. The prevalence of asexual parasites and of gametocyte carriage declined over time, and after 2006, when artemisinin combination therapy (ACT) was introduced, recent episodes of clinical malaria ceased to be a predictor of gametocyte carriage.  Conclusions: Gametocyte carriage in children in Kilifi has fallen over time.  Previous episodes of clinical malaria may contribute to the development of carriage, but this appears to be mitigated by the use of ACTs highlighting the impact that gametocidal antimalarials can have in reducing the overall prevalence of gametocytaemia when targeted on acute febrile illness.

3.
BMC Med ; 17(1): 60, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30862316

ABSTRACT

BACKGROUND: There are over 200 million reported cases of malaria each year, and most children living in endemic areas will experience multiple episodes of clinical disease before puberty. We set out to understand how frequent clinical malaria, which elicits a strong inflammatory response, affects the immune system and whether these modifications are observable in the absence of detectable parasitaemia. METHODS: We used a multi-dimensional approach comprising whole blood transcriptomic, cellular and plasma cytokine analyses on a cohort of children living with endemic malaria, but uninfected at sampling, who had been under active surveillance for malaria for 8 years. Children were categorised into two groups depending on the cumulative number of episodes experienced: high (≥ 8) or low (< 5). RESULTS: We observe that multiple episodes of malaria are associated with modification of the immune system. Children who had experienced a large number of episodes demonstrated upregulation of interferon-inducible genes, a clear increase in circulating levels of the immunoregulatory cytokine IL-10 and enhanced activation of neutrophils, B cells and CD8+ T cells. CONCLUSION: Transcriptomic analysis together with cytokine and immune cell profiling of peripheral blood can robustly detect immune differences between children with different numbers of prior malaria episodes. Multiple episodes of malaria are associated with modification of the immune system in children. Such immune modifications may have implications for the initiation of subsequent immune responses and the induction of vaccine-mediated protection.


Subject(s)
Immune System Diseases/immunology , Malaria/immunology , Child , Child, Preschool , Humans
4.
J Infect Dis ; 219(6): 936-944, 2019 02 23.
Article in English | MEDLINE | ID: mdl-30307567

ABSTRACT

BACKGROUND: Plasmodium falciparum infections lead to febrile illness unless the host has sufficient immunity, in which case infection may cause no immediate symptoms (ie, "asymptomatic parasitemia"). Previous studies are conflicting on the role of asymptomatic parasitemia in determining the risk of developing febrile malaria. METHODS: We monitored 2513 children (living in Kilifi, Kenyan Coast) by blood smears in 17 cross-sectional surveys to identify asymptomatic parasitemia and used active surveillance over 11325 child-years of follow-up to detect febrile malaria. We evaluated the interaction between transmission intensity, age, and asymptomatic parasitemia in determining the risk of developing febrile malaria. RESULTS: In the moderate and high transmission intensity settings, asymptomatic parasitemia was associated with a reduced risk of febrile malaria in older children (> 3 years), while in the lower transmission setting, asymptomatic parasitemia was associated with an increased risk of febrile malaria in children of all ages. Additionally, the risk associated with asymptomatic parasitemia was limited to the first 90 days of follow-up. CONCLUSIONS: Asymptomatic parasitemia is modified by transmission intensity and age, altering the risk of developing febrile episodes and suggesting that host immunity plays a prominent role in mediating this process.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Plasmodium falciparum/cytology , Adolescent , Age Factors , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Malaria, Falciparum/parasitology , Male , Parasitemia/blood , Prognosis , Risk Factors
5.
J Infect Dis ; 216(9): 1091-1098, 2017 11 27.
Article in English | MEDLINE | ID: mdl-28973672

ABSTRACT

Background: Malaria control strategies need to respond to geographical hotspots of transmission. Detection of hotspots depends on the sensitivity of the diagnostic tool used. Methods: We conducted cross-sectional surveys in 3 sites within Kilifi County, Kenya, that had variable transmission intensities. Rapid diagnostic test (RDT), microscopy, and polymerase chain reaction (PCR) were used to detect asymptomatic parasitemia, and hotspots were detected using the spatial scan statistic. Results: Eight thousand five hundred eighty-one study participants were surveyed in 3 sites. There were statistically significant malaria hotspots by RDT, microscopy, and PCR for all sites except by microscopy in 1 low transmission site. Pooled data analysis of hotspots by PCR overlapped with hotspots by microscopy at a moderate setting but not at 2 lower transmission settings. However, variations in degree of overlap were noted when data were analyzed by year. Hotspots by RDT were predictive of PCR/microscopy at the moderate setting, but not at the 2 low transmission settings. We observed long-term stability of hotspots by PCR and microscopy but not RDT. Conclusion: Malaria control programs may consider PCR testing to guide asymptomatic malaria hotspot detection once the prevalence of infection falls.


Subject(s)
Asymptomatic Infections/epidemiology , Diagnostic Tests, Routine , Disease Outbreaks/prevention & control , Malaria/diagnosis , Microscopy , Polymerase Chain Reaction , Adolescent , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Malaria/epidemiology , Male , Prevalence
6.
BMC Med ; 14(1): 143, 2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27660116

ABSTRACT

BACKGROUND: Naturally acquired immunity to malaria may be lost with lack of exposure. Recent heterogeneous reductions in transmission in parts of Africa mean that large populations of previously protected people may lose their immunity while remaining at risk of infection. METHODS: Using two ethnically similar long-term cohorts of children with historically similar levels of exposure to Plasmodium falciparum who now experience very different levels of exposure, we assessed the effect of decreased parasite exposure on antimalarial immunity. Peripheral blood mononuclear cells (PBMCs) from children in each cohort were stimulated with P. falciparum and their P. falciparum-specific proliferative and cytokine responses were compared. RESULTS: We demonstrate that, while P. falciparum-specific CD4+ T cells are maintained in the absence of exposure, the proliferative capacity of these cells is altered considerably. P. falciparum-specific CD4+ T cells isolated from children previously exposed, but now living in an area of minimal exposure ("historically exposed") proliferate significantly more upon stimulation than cells isolated from children continually exposed to the parasite. Similarly, PBMCs from historically exposed children expressed higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines after stimulation with P. falciparum. Notably, we found a significant positive association between duration since last febrile episode and P. falciparum-specific CD4+ T cell proliferation, with more recent febrile episodes associated with lower proliferation. CONCLUSION: Considered in the context of existing knowledge, these data suggest a model explaining how immunity is lost in absence of continuing exposure to P. falciparum.

7.
N Engl J Med ; 374(26): 2519-29, 2016 Jun 30.
Article in English | MEDLINE | ID: mdl-27355532

ABSTRACT

BACKGROUND: The candidate malaria vaccine RTS,S/AS01 is being evaluated in order to inform a decision regarding its inclusion in routine vaccination schedules. METHODS: We conducted 7 years of follow-up in children who had been randomly assigned, at 5 to 17 months of age, to receive three doses of either the RTS,S/AS01 vaccine or a rabies (control) vaccine. The end point was clinical malaria (temperature of ≥37.5°C and infection with Plasmodium falciparum of >2500 parasites per cubic millimeter). In an analysis that was not prespecified, the malaria exposure of each child was estimated with the use of information on the prevalence of malaria among residents within a 1-km radius of the child's home. Vaccine efficacy was defined as 1 minus the hazard ratio or the incidence-rate ratio, multiplied by 100, in the RTS,S/AS01 group versus the control group. RESULTS: Over 7 years of follow-up, we identified 1002 episodes of clinical malaria among 223 children randomly assigned to the RTS,S/AS01 group and 992 episodes among 224 children randomly assigned to the control group. The vaccine efficacy, as assessed by negative binomial regression, was 4.4% (95% confidence interval [CI], -17.0 to 21.9; P=0.66) in the intention-to-treat analysis and 7.0% (95% CI, -14.5 to 24.6; P=0.52) in the per-protocol analysis. Vaccine efficacy waned over time (P=0.006 for the interaction between vaccination and time), including negative efficacy during the fifth year among children with higher-than-average exposure to malaria parasites (intention-to-treat analysis: -43.5%; 95% CI, -100.3 to -2.8 [P=0.03]; per-protocol analysis: -56.8%; 95% CI, -118.7 to -12.3 [P=0.008]). CONCLUSIONS: A three-dose vaccination with RTS,S/AS01 was initially protective against clinical malaria, but this result was offset by rebound in later years in areas with higher-than-average exposure to malaria parasites. (Funded by the PATH Malaria Vaccine Initiative and others; ClinicalTrials.gov number, NCT00872963.).


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Vaccines, Synthetic/immunology , Datasets as Topic , Double-Blind Method , Female , Follow-Up Studies , Humans , Infant , Intention to Treat Analysis , Malaria Vaccines/adverse effects , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Male , Parasitemia , Plasmodium falciparum/immunology , Plasmodium falciparum/isolation & purification , Proportional Hazards Models , Treatment Outcome , Vaccines, Synthetic/adverse effects
8.
BMC Med ; 13: 183, 2015 Aug 06.
Article in English | MEDLINE | ID: mdl-26248615

ABSTRACT

BACKGROUND: The distribution of Plasmodium falciparum clinical malaria episodes is over-dispersed among children in endemic areas, with more children experiencing multiple clinical episodes than would be expected based on a Poisson distribution. There is consistent evidence for micro-epidemiological variation in exposure to P. falciparum. The aim of the current study was to identify children with excess malaria episodes after controlling for malaria exposure. METHODS: We selected the model that best fit the data out of the models examined and included the following covariates: age, a weighted local prevalence of infection as an index of exposure, and calendar time to predict episodes of malaria on active surveillance malaria data from 2,463 children of under 15 years of age followed for between 5 and 15 years each. Using parameters from the zero-inflated negative binomial model which best fitted our data, we ran 100 simulations of the model based on our population to determine the variation that might be seen due to chance. RESULTS: We identified 212 out of 2,463 children who had a number of clinical episodes above the 95(th) percentile of the simulations run from the model, hereafter referred to as "excess malaria (EM)". We then identified exposure-matched controls with "average numbers of malaria" episodes, and found that the EM group had higher parasite densities when asymptomatically infected or during clinical malaria, and were less likely to be of haemoglobin AS genotype. CONCLUSIONS: Of the models tested, the negative zero-inflated negative binomial distribution with exposure, calendar year, and age acting as independent predictors, fitted the distribution of clinical malaria the best. Despite accounting for these factors, a group of children suffer excess malaria episodes beyond those predicted by the model. An epidemiological framework for identifying these children will allow us to study factors that may explain excess malaria episodes.


Subject(s)
Child Welfare/statistics & numerical data , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Models, Statistical , Plasmodium falciparum/isolation & purification , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Kenya/epidemiology , Longitudinal Studies , Malaria, Falciparum/transmission , Male , Poisson Distribution , Prevalence , Risk Factors
9.
BMC Med ; 13: 114, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25967134

ABSTRACT

BACKGROUND: Epidemiological studies indicate that some children experience many more episodes of clinical malaria than their age mates in a given location. Whether this is as a result of the micro-heterogeneity of malaria transmission with some children effectively getting more exposure to infectious mosquitoes than others, or reflects a failure in the acquisition of immunity needs to be elucidated. Here, we investigated the determinants of increased susceptibility to clinical malaria by comparing the intensity of exposure to Plasmodium falciparum and the acquisition of immunity in children at the extreme ends of the over-dispersed distribution of the incidence of clinical malaria. METHODS: The study was nested within a larger cohort in an area where the intensity of malaria transmission was low. We identified children who over a five-year period experienced 5 to 16 clinical malaria episodes (children at the tail-end of the over-dispersed distribution, n = 35), remained malaria-free (n = 12) or had a single episode (n = 26). We quantified antibodies against seven Plasmodium falciparum merozoite antigens in plasma obtained at six cross-sectional surveys spanning these five years. We analyzed the antibody responses to identify temporal dynamics that associate with disease susceptibility. RESULTS: Children experiencing multiple episodes of malaria were more likely to be parasite positive by microscopy at cross-sectional surveys (X (2) test for trend 14.72 P = 0.001) and had a significantly higher malaria exposure index, than those in the malaria-free or single episode groups (Kruskal-Wallis test P = 0.009). In contrast, the five-year temporal dynamics of anti-merozoite antibodies were similar in the three groups. Importantly in all groups, antibody levels were below the threshold concentrations previously observed to be correlated with protective immunity. CONCLUSIONS: We conclude that in the context of a low malaria transmission setting, susceptibility to clinical malaria is not accounted for by anti-merozoite antibodies but appears to be a consequence of increased parasite exposure. We hypothesize that intensive exposure is a prerequisite for protective antibody concentrations, while little to modest exposure may manifest as multiple clinical infections with low levels of antibodies. These findings have implications for interventions that effectively lower malaria transmission intensity.


Subject(s)
Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Animals , Antibodies, Protozoan/blood , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Incidence , Infant , Malaria, Falciparum/transmission , Male , Plasmodium falciparum
10.
N Engl J Med ; 368(12): 1111-20, 2013 Mar 21.
Article in English | MEDLINE | ID: mdl-23514288

ABSTRACT

BACKGROUND: The candidate malaria vaccine RTS,S/AS01E has entered phase 3 trials, but data on long-term outcomes are limited. METHODS: For 4 years, we followed children who had been randomly assigned, at 5 to 17 months of age, to receive three doses of RTS,S/AS01E vaccine (223 children) or rabies vaccine (224 controls). The end point was clinical malaria (temperature of ≥37.5°C and Plasmodium falciparum parasitemia density of >2500 parasites per cubic millimeter). Each child's exposure to malaria was estimated with the use of the distance-weighted local prevalence of malaria. RESULTS: Over a period of 4 years, 118 of 223 children who received the RTS,S/AS01E vaccine and 138 of 224 of the controls had at least 1 episode of clinical malaria. Vaccine efficacies in the intention-to-treat and per-protocol analyses were 29.9% (95% confidence interval [CI], 10.3 to 45.3; P=0.005) and 32.1% (95% CI, 11.6 to 47.8; P=0.004), respectively, calculated by Cox regression. Multiple episodes were common, with 551 and 618 malarial episodes in the RTS,S/AS01E and control groups, respectively; vaccine efficacies in the intention-to-treat and per-protocol analyses were 16.8% (95% CI, -8.6 to 36.3; P=0.18) and 24.3% (95% CI, 1.9 to 41.6; P=0.04), respectively, calculated by the Andersen-Gill extension of the Cox model. For every 100 vaccinated children, 65 cases of clinical malaria were averted. Vaccine efficacy declined over time (P=0.004) and with increasing exposure to malaria (P=0.001) in the per-protocol analysis. Vaccine efficacy was 43.6% (95% CI, 15.5 to 62.3) in the first year but was -0.4% (95% CI, -32.1 to 45.3) in the fourth year. Among children with a malaria-exposure index that was average or lower than average, the vaccine efficacy was 45.1% (95% CI, 11.3 to 66.0), but among children with a malaria-exposure index that was higher than average it was 15.9% (95% CI, -11.0 to 36.4). CONCLUSIONS: The efficacy of RTS,S/AS01E vaccine over the 4-year period was 16.8%. Efficacy declined over time and with increasing malaria exposure. (Funded by the PATH Malaria Vaccine Initiative and Wellcome Trust; ClinicalTrials.gov number, NCT00872963.).


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Vaccines, Synthetic/immunology , Antibodies, Protozoan , Child , Follow-Up Studies , Humans , Incidence , Infant , Intention to Treat Analysis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Male , Parasite Load , Parasitemia , Regression Analysis , Treatment Outcome
11.
PLoS One ; 8(2): e57320, 2013.
Article in English | MEDLINE | ID: mdl-23437368

ABSTRACT

BACKGROUND: Plasmodium falciparum malaria remains a major cause of illness and death in sub-Saharan Africa. Young children bear the brunt of the disease and though older children and adults suffer relatively fewer clinical attacks, they remain susceptible to asymptomatic P. falciparum infection. A better understanding of the host factors associated with immunity to clinical malaria and the ability to sustain asymptomatic P. falciparum infection will aid the development of improved strategies for disease prevention. METHODS AND FINDINGS: Here we investigate whether full differential blood counts can predict susceptibility to clinical malaria among Kenyan children sampled at five annual cross-sectional surveys. We find that the ratio of monocytes to lymphocytes, measured in peripheral blood at the time of survey, directly correlates with risk of clinical malaria during follow-up. This association is evident among children with asymptomatic P. falciparum infection at the time the cell counts are measured (Hazard ratio (HR)  =  2.7 (95% CI 1.42, 5.01, P  =  0.002) but not in those without detectable parasitaemia (HR  =  1.0 (95% CI 0.74, 1.42, P  =  0.9). CONCLUSIONS: We propose that the monocyte to lymphocyte ratio, which is easily derived from routine full differential blood counts, reflects an individual's capacity to mount an effective immune response to P. falciparum infection.


Subject(s)
Lymphocytes/immunology , Malaria, Falciparum/immunology , Monocytes/immunology , Parasitemia/immunology , Plasmodium falciparum/immunology , Asymptomatic Infections , Blood Cell Count , Child , Child, Preschool , Cross-Sectional Studies , Disease Susceptibility , Female , Genotype , Humans , Kenya , Lymphocytes/pathology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/parasitology , Malaria, Falciparum/pathology , Male , Monocytes/pathology , Parasitemia/diagnosis , Parasitemia/parasitology , Parasitemia/pathology , Prognosis , Risk
12.
PLoS One ; 7(3): e32929, 2012.
Article in English | MEDLINE | ID: mdl-22479349

ABSTRACT

BACKGROUND: Heterogeneity in malaria exposure complicates survival analyses of vaccine efficacy trials and confounds the association between immune correlates of protection and malaria infection in longitudinal studies. Analysis may be facilitated by taking into account the variability in individual exposure levels, but it is unclear how exposure can be estimated at an individual level. METHOD AND FINDINGS: We studied three cohorts (Chonyi, Junju and Ngerenya) in Kilifi District, Kenya to assess measures of malaria exposure. Prospective data were available on malaria episodes, geospatial coordinates, proximity to infected and uninfected individuals and residence in predefined malaria hotspots for 2,425 individuals. Antibody levels to the malaria antigens AMA1 and MSP1(142) were available for 291 children from Junju. We calculated distance-weighted local prevalence of malaria infection within 1 km radius as a marker of individual's malaria exposure. We used multivariable modified Poisson regression model to assess the discriminatory power of these markers for malaria infection (i.e. asymptomatic parasitaemia or clinical malaria). The area under the receiver operating characteristic (ROC) curve was used to assess the discriminatory power of the models. Local malaria prevalence within 1 km radius and AMA1 and MSP1(142) antibodies levels were independently associated with malaria infection. Weighted local malaria prevalence had an area under ROC curve of 0.72 (95%CI: 0.66-0.73), 0.71 (95%CI: 0.69-0.73) and 0.82 (95%CI: 0.80-0.83) among cohorts in Chonyi, Junju and Ngerenya respectively. In a small subset of children from Junju, a model incorporating weighted local malaria prevalence with AMA1 and MSP1(142) antibody levels provided an AUC of 0.83 (95%CI: 0.79-0.88). CONCLUSION: We have proposed an approach to estimating the intensity of an individual's malaria exposure in the field. The weighted local malaria prevalence can be used as individual marker of malaria exposure in malaria vaccine trials and longitudinal studies of natural immunity to malaria.


Subject(s)
Antibodies, Protozoan/immunology , Antigens, Protozoan/immunology , Malaria/diagnosis , Malaria/immunology , Plasmodium/immunology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Malaria/epidemiology , Male , Merozoite Surface Protein 1/immunology , Middle Aged , Multivariate Analysis , Prevalence , Prospective Studies , ROC Curve , Regression Analysis , Young Adult
13.
Nat Commun ; 3: 674, 2012 Feb 14.
Article in English | MEDLINE | ID: mdl-22334077

ABSTRACT

Studies of the fine-scale spatial epidemiology of malaria consistently identify malaria hotspots, comprising clusters of homesteads at high transmission intensity. These hotspots sustain transmission, and may be targeted by malaria-control programmes. Here we describe the spatial relationship between the location of Anopheles larval sites and human malaria infection in a cohort study of 642 children, aged 1-10-years-old. Our data suggest that proximity to larval sites predict human malaria infection, when homesteads are upwind of larval sites, but not when homesteads are downwind of larval sites. We conclude that following oviposition, female Anophelines fly upwind in search for human hosts and, thus, malaria transmission may be disrupted by targeting vector larval sites in close proximity, and downwind to malaria hotspots.


Subject(s)
Larva/physiology , Malaria/parasitology , Weather , Wind , Animals , Anopheles , Child , Child, Preschool , Cohort Studies , Female , Humans , Incidence , Infant , Insect Vectors , Kenya , Malaria/diagnosis , Malaria/epidemiology , Male , Mosquito Control , Multivariate Analysis , Oviposition , Poisson Distribution , Sporozoites/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...