Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Rev E ; 97(4-1): 040101, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29758684

ABSTRACT

The persistence of a stochastic variable is the probability that it does not cross a given level during a fixed time interval. Although persistence is a simple concept to understand, it is in general hard to calculate. Here we consider zero mean Gaussian stationary processes in discrete time n. Few results are known for the persistence P_{0}(n) in discrete time, except the large time behavior which is characterized by the nontrivial constant θ through P_{0}(n)∼θ^{n}. Using a modified version of the independent interval approximation (IIA) that we developed before, we are able to calculate P_{0}(n) analytically in z-transform space in terms of the autocorrelation function A(n). If A(n)→0 as n→∞, we extract θ numerically, while if A(n)=0, for finite n>N, we find θ exactly (within the IIA). We apply our results to three special cases: the nearest-neighbor-correlated "first order moving average process", where A(n)=0 for n>1, the double exponential-correlated "second order autoregressive process", where A(n)=c_{1}λ_{1}^{n}+c_{2}λ_{2}^{n}, and power-law-correlated variables, where A(n)∼n^{-µ}. Apart from the power-law case when µ<5, we find excellent agreement with simulations.

2.
Phys Rev E ; 97(3-1): 032114, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29776037

ABSTRACT

In applications spanning from image analysis and speech recognition to energy dissipation in turbulence and time-to failure of fatigued materials, researchers and engineers want to calculate how often a stochastic observable crosses a specific level, such as zero. At first glance this problem looks simple, but it is in fact theoretically very challenging, and therefore few exact results exist. One exception is the celebrated Rice formula that gives the mean number of zero crossings in a fixed time interval of a zero-mean Gaussian stationary process. In this study we use the so-called independent interval approximation to go beyond Rice's result and derive analytic expressions for all higher-order zero-crossing cumulants and moments. Our results agree well with simulations for the non-Markovian autoregressive model.

SELECTION OF CITATIONS
SEARCH DETAIL