Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Chimia (Aarau) ; 78(4): 209-214, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676611

ABSTRACT

Antibiotics reach agricultural soils via fertilization with manure and biosolids as well as irrigation withwastewater and have the potential to be taken up by growing crops. The fate of antibiotics in terms of uptakefrom soil to plants, as well as translocation from root to leaves, is determined by a combination of antibiotic'sphysio-chemical (e.g. speciation, lipophilicity), soil (e.g. organic carbon content, pH) and plant (e.g.transpiration rates) characteristics. In this meta-analysis, a literature search was executed to obtain an overview of antibiotic uptake to plants, with an aim to identify uptake and translocation patterns of different antibiotic classes. Overall, we found that higher uptake of tetracyclines to plant leaves was observed compared to sulfonamides. Differences were also observed in translocation within the plants, where tetracyclines were found in roots and leaves with close to equal concentrations, while the sulfonamides represented a tendency to accumulate to the root fraction. The antibiotic's characteristics have a high influence on their fate, for example, the high water-solubility and uncharged speciation in typical agricultural soil pH ranges likely induces tetracycline uptake from soil and translocation in plant. Despite the advances in knowledge over the past decade, our meta-analysis indicated that the available research is focused on a limited number of analytes and antibiotic classes. Furthermore, fastgrowing plant species (e.g. spinach, lettuce, and radish) are overly represented in studies compared to crop species with higher significance for human food sources (e.g. corn, wheat, and potato), requiring more attention in future research.


Subject(s)
Anti-Bacterial Agents , Plants , Soil , Anti-Bacterial Agents/metabolism , Soil/chemistry , Plants/metabolism , Plants/chemistry , Soil Pollutants/metabolism , Soil Pollutants/analysis , Biological Transport , Plant Roots/metabolism , Plant Roots/chemistry , Plant Leaves/metabolism , Plant Leaves/chemistry
2.
J Hazard Mater ; 465: 133393, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38211519

ABSTRACT

The environmental fate of hazardous hydrophobic pollutants in the marine environment is strongly influenced by organic carbon (OC) cycling. As an example, the seasonality in primary production impacts both water column OC quantity and quality, which may influence pollutant mass transport from the water column to the sediment. This study aims to better understand the role of water column OC variability for the fate of pollutants in a near-coastal area. We conducted an in situ sampling campaign in the coastal Baltic Proper during two seasons, summer and autumn. We used polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) as model compounds, as they represent a wide range in physicochemical properties and are ubiquitous in the environment. Freely dissolved, and OC-bound concentrations were studied in the water column and surface sediment. We found stronger sorption of pollutants to suspended particulate matter (SPM) during the summer compared to the autumn (average 0.6 and 0.9 log unit higher particle-water partition coefficients during summer for PAHs and PCBs). Our data suggest that stronger sorption mirrors a compositional change of the OC towards higher contribution of labile OC during the summer, characterized by two times higher fatty acid and 24% higher dicarboxylic acids in SPM during summer. High concentrations of OC in the water column during the autumn resulted in increased SPM-mediated sinking fluxes of pollutants. Our results suggest that future changes in primary production are prone to influence the bioavailability and mobility of pollutants in costal zones, potentially affecting the residence time of these hazardous substances in the circulating marine environment.

3.
Environ Pollut ; 341: 122882, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951527

ABSTRACT

Understanding how key-species respond to anthropogenic stress such as chemical pollution is critical for predicting ecosystem changes. Little is however known about the intra-specific variability in the physiological and biochemical traits involved in contaminant exposure responses. Here, we explored this idea by exposing the Baltic amphipod Monoporeia affinis from two sites, one moderately polluted and one more pristine, to a sediment spiked with PAHs and PCBs. We evaluated the amphipods responses related to feeding, growth, a stress biomarker (acetylcholinesterase [AChE] inhibition) and stable isotope (δ13C and δ15N) composition including isotope niche analyses. More adverse responses were expected in animals from the low-pollution site than those from the high-pollution site due to tolerance development in the latter. Amphipods from both populations showed a ∼30% AChE inhibition when exposed to the contaminant spiked sediment. However, both controls and exposed amphipods from the high-pollution site had higher survival, nutrient uptake and condition status than the amphipods from the low-pollution site, which did not feed on the added diatoms as indicated by their isotope values. We found no signs of population-specific responses in physiological adjustments to contaminants with regard to classic ecotoxicological biomarkers such as AChE inhibition and growth status. Instead, isotope niche analyses proved useful in assessing contaminant stress responses at the population level.


Subject(s)
Amphipoda , Water Pollutants, Chemical , Animals , Sentinel Species , Acetylcholinesterase , Ecosystem , Environmental Monitoring , Amphipoda/physiology , Isotopes/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis
4.
Nat Commun ; 13(1): 5057, 2022 08 27.
Article in English | MEDLINE | ID: mdl-36030269

ABSTRACT

Subsea permafrost represents a large carbon pool that might be or become a significant greenhouse gas source. Scarcity of observational data causes large uncertainties. We here use five 21-56 m long subsea permafrost cores from the Laptev Sea to constrain organic carbon (OC) storage and sources, degradation state and potential greenhouse gas production upon thaw. Grain sizes, optically-stimulated luminescence and biomarkers suggest deposition of aeolian silt and fluvial sand over 160 000 years, with dominant fluvial/alluvial deposition of forest- and tundra-derived organic matter. We estimate an annual thaw rate of 1.3 ± 0.6 kg OC m-2 in subsea permafrost in the area, nine-fold exceeding organic carbon thaw rates for terrestrial permafrost. During 20-month incubations, CH4 and CO2 production averaged 1.7 nmol and 2.4 µmol g-1 OC d-1, providing a baseline to assess the contribution of subsea permafrost to the high CH4 fluxes and strong ocean acidification observed in the region.


Subject(s)
Greenhouse Gases , Permafrost , Carbon , Hydrogen-Ion Concentration , Seawater , Soil
5.
Environ Toxicol Chem ; 41(4): 1096-1110, 2022 04.
Article in English | MEDLINE | ID: mdl-35040192

ABSTRACT

Thin-layer capping using activated carbon has been described as a cost-effective in situ sediment remediation method for organic contaminants. We compared the capping efficiency of powdered activated carbon (PAC) against granular activated carbon (GAC) using contaminated sediment from Oskarshamn harbor, Sweden. The effects of resuspension on contaminant retention and cap integrity were also studied. Intact sediment cores were collected from the outer harbor and brought to the laboratory. Three thin-layer caps, consisting of PAC or GAC mixed with clay or clay only, were added to the sediment surface. Resuspension was created using a motor-driven paddle to simulate propeller wash from ship traffic. Passive samplers were placed in the sediment and in the water column to measure the sediment-to-water release of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and metals. Our results show that a thin-layer cap with PAC reduced sediment-to-water fluxes of PCBs by 57% under static conditions and 91% under resuspension. Thin-layer capping with GAC was less effective than PAC but reduced fluxes of high-molecular weight PAHs. Thin-layer capping with activated carbon was less effective at retaining metals, except for Cd, the release of which was significantly reduced by PAC. Resuspension generally decreased water concentrations of dissolved cationic metals, perhaps because of sorption to suspended sediment particles. Sediment resuspension in treatments without capping increased fluxes of PCBs with log octanol-water partitioning coefficient (KOW ) > 7 and PAHs with log KOW of 5-6, but resuspension reduced PCB and PAH fluxes through the PAC thin-layer cap. Overall, PAC performed better than GAC, but adverse effects on the benthic community and transport of PAC to nontarget areas are drawbacks that favor the use of GAC. Environ Toxicol Chem 2022;41:1096-1110. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Charcoal/chemistry , Clay , Geologic Sediments/chemistry , Metals , Particle Size , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water , Water Pollutants, Chemical/analysis
6.
Environ Toxicol Chem ; 40(12): 3465-3477, 2021 12.
Article in English | MEDLINE | ID: mdl-34748656

ABSTRACT

The application of activated carbon (AC) to the surface of contaminated sediments is a promising technology for sediment remediation in situ. Amendment with AC has proved to be effective in reducing bioavailability and sediment-to-water release of hydrophobic organic contaminants. However, AC may cause positive or negative biological responses in benthic organisms. The causes of these effects, which include changes in growth, reproduction, and mortality, are unclear but are thought to be related to the size of AC particles. The present study investigated biological response to AC ranging from ingestible powdered AC to noningestible granular AC in two benthic deposit feeders: the polychaete Marenzelleria spp. and the clam Limecola balthica (syn. Macoma balthica). In the polychaete, exposure to powdered AC (ingestible) reduced both dry weight and carbon assimilation, whereas exposure to granular AC (noningestible) increased both dry weight and carbon assimilation. Responses in the clam were similar but less pronounced, indicating that response levels are species-specific and may vary within a benthic community. In addition, worms exposed to the finest ingestible AC particles had reduced gut microvilli length and reduced gut lumen, indicating starvation. These results strongly suggest that biological responses to AC depend on particle ingestibility, whereby exposure to ingestible particles may cause starvation through reduced bioavailability of food coingested with AC or due to rejection of AC-treated sediment as a food source. Environ Toxicol Chem 2021;40:3465-3477. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Subject(s)
Bivalvia , Polychaeta , Animals , Charcoal/chemistry , Geologic Sediments/chemistry , Particle Size
7.
Environ Sci Technol ; 55(19): 13061-13071, 2021 10 05.
Article in English | MEDLINE | ID: mdl-34554730

ABSTRACT

The transport and fate of hydrophobic organic contaminants (HOCs) in the marine environment are closely linked to organic carbon (OC) cycling processes. We investigated the influence of marine versus terrestrial OC origin on HOC fluxes at two Baltic Sea coastal sites with different relative contributions of terrestrial and marine OC. Stronger sorption of the more than four-ring polycyclic aromatic hydrocarbons and penta-heptachlorinated polychlorinated biphenyls (PCBs) was observed at the marine OC-dominated site. The site-specific partition coefficients between sediment OC and water were 0.2-1.0 log units higher at the marine OC site, with the freely dissolved concentrations in the sediment pore-water 2-10 times lower, when compared with the terrestrial OC site. The stronger sorption at the site characterized with marine OC was most evident for the most hydrophobic PCBs, leading to reduced fluxes of these compounds from sediment to water. According to these results, future changes in OC cycling because of climate change, leading to increased input of terrestrial OC to the marine system, can have consequences for the availability and mobility of HOCs in aquatic systems and thereby also for the capacity of sediments to store HOCs.


Subject(s)
Polychlorinated Biphenyls , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Carbon , Environmental Monitoring , Geologic Sediments , Polychlorinated Biphenyls/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Water Pollutants, Chemical/analysis
8.
Environ Toxicol Chem ; 38(8): 1803-1810, 2019 08.
Article in English | MEDLINE | ID: mdl-31050018

ABSTRACT

In the present study a recently developed benthic flow-through chamber was used to assess the sediment-to-water flux of polycyclic aromatic hydrocarbons (PAHs) at 4 sites on the Swedish Baltic Sea coast. The flow-through chamber allows for assessment of the potential effect of bioturbation on the sediment-to-water flux of hydrophobic organic contaminants. The sediments at the 4 investigated sites have both varying contamination degree and densities of bioturbating organisms. The flux of individual PAHs measured with the flow-through chamber ranged between 21 and 510, 11 and 370, 3 and 9700, and 62 and 2300 ng m-2 d-1 for the 4 sites. To assess the potential effect of bioturbation on the sediment-to-water flux, 3 flow-through and closed chambers were deployed in parallel at each site. The activity of benthic organisms is attenuated or halted because of depletion of oxygen in closed benthic chambers. Therefore, the discrepancy in flux measured with the 2 different chamber designs was used as an indication of a possible effect of bioturbation. A potential effect of bioturbation on the sediment-to-water flux by a factor of 3 to 55 was observed at sites with a high density of bioturbating organisms (e.g., Marenzelleria spp., Monoporeia affinis, and Macoma balthica of approximately 860-1200 individuals m-2 ) but not at the site with much lower organism density (<200 individuals m-2 ). One site had a high organism density and a low potential effect of bioturbation, which we hypothesize to be caused by the dominance of oligochaetes/polychaetes at this site because worms (Marenzelleria spp.) reach deeper into the sediment than native crustaceans and mollusks. Environ Toxicol Chem 2019;38:1803-1810. © 2019 SETAC.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Invertebrates/growth & development , Polycyclic Aromatic Hydrocarbons/analysis , Seawater/chemistry , Water Pollutants, Chemical/analysis , Amphipoda/growth & development , Animals , Bivalvia/growth & development , Hydrophobic and Hydrophilic Interactions , Oceans and Seas , Polychaeta/growth & development , Sweden
9.
PLoS One ; 14(2): e0205378, 2019.
Article in English | MEDLINE | ID: mdl-30779782

ABSTRACT

The role of microplastic (MP) as a carrier of persistent organic pollutants (POPs) to aquatic organisms has been a topic of debate. However, the reverse POP transport can occur if relative contaminant concentrations are higher in the organism than in the microplastic. We evaluated the effect of microplastic on the PCB removal in planktonic animals by exposing the cladoceran Daphnia magna with a high body burden of polychlorinated biphenyls (PCB 18, 40, 128 and 209) to a mixture of microplastic and algae; daphnids exposed to only algae served as the control. As the endpoints, we used PCB body burden, growth, fecundity and elemental composition (%C and %N) of the daphnids. In the daphnids fed with microplastic, PCB 209 was removed more efficiently, while there was no difference for any other congeners and ΣPCBs between the microplastic-exposed and control animals. Also, higher size-specific egg production in the animals carrying PCB and receiving food mixed with microplastics was observed. However, the effects of the microplastic exposure on fecundity were of low biological significance, because the PCB body burden and the microplastic exposure concentrations were greatly exceeding environmentally relevant concentrations.


Subject(s)
Daphnia/metabolism , Environmental Pollutants/chemistry , Plastics/chemistry , Polychlorinated Biphenyls/chemistry , Water Pollutants, Chemical/chemistry , Animals , Chlorophyta , Daphnia/drug effects , Daphnia/growth & development , Eating , Fertility/drug effects , Proof of Concept Study , Reproduction/drug effects
10.
Sci Total Environ ; 662: 88-98, 2019 Apr 20.
Article in English | MEDLINE | ID: mdl-30690382

ABSTRACT

There are several methods for studying metal-contaminated freshwater sediments, but more information is needed on which methods to include in ecological risk assessment. In this study, we compliment the traditional Sediment Quality Triad (SQT) approach - including information on chemistry, toxicity and ecological status - with studies on metal bioavailability and metal body residues in local organisms. We studied four mining-affected boreal lakes in Finland by conducting chemical analyses of sediment and water, toxicity tests (L. variegatus, V. fischeri, C. riparius, L. stagnalis), and analysis of benthic organism community structure. In addition, we studied the relationships between metal loading, toxicity, metal bioavailability, and metal body residues in the field-collected biota. Chemistry and benthic organism community structures show adverse effects in those lakes, where the metal concentrations are the highest. However, toxicity was connected to low sediment pH during the experiment, rather than to high metal concentrations. Toxicity was observed in 4 out of 6 toxicity tests including growth test with L. variegatus, bulk sediment test with V. fischeri, and the L. stagnalis toxicity test. The C. riparius test did not show toxicity. Metal body residues in biota were not high enough to induce adverse effects (0.1-4.1 mg Cu/kg fw, 0.01-0.3 mg Ni/kg fw, 2.9-26.7 mg Zn/kg fw and 0.01-0.7 mg As/kg fw). Chemical analyses, metal bioavailability assessment and benthic community structures survey revealed adverse effects in the sediments, where metal concentrations are highest (Lake SJ and Lake KS). Standard toxicity tests were not suitable for studying acid, sulfide-rich sediments and, therefore, benthic structure study and chemical analyses are believed to give more reliable results of the ecological status of these sediments.


Subject(s)
Fishes/metabolism , Geologic Sediments/analysis , Invertebrates/drug effects , Lakes/analysis , Metals/toxicity , Vibrio/drug effects , Water Pollutants, Chemical/toxicity , Animals , Biological Availability , Finland , Mining , Risk Assessment , Toxicity Tests
11.
Water Res ; 114: 104-112, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28229948

ABSTRACT

Activated carbon (AC) has been proven to be highly effective for the in-situ remediation of sediments contaminated with a wide range of hydrophobic organic contaminants (HOCs). However, adverse biological effects, especially to benthic organisms, can accompany this promising remediation potential. In this study, we compare both the remediation potential and the biological effects of several AC materials for two application methods: mixing with sediment (MIX) at doses of 0.1 and 1.0% based on sediment dw and thin layer capping (TLC) with 0.6 and 1.2 kg AC/m2. Significant dose dependent reductions in PCB bioaccumulation in Lumbriculus variegatus of 35-93% in MIX treatments were observed. Contaminant uptake in TLC treatments was reduced by up to 78% and differences between the two applied doses were small. Correspondingly, significant adverse effects were observed for L. variegatus whenever AC was present in the sediment. The lowest application dose of 0.1% AC in the MIX system reduced L. variegatus growth, and 1.0% AC led to a net loss of organism biomass. All TLC treatments let to a loss of biomass in the test organism. Furthermore, mortality was observed with 1.2 kg AC/m2 doses of pure AC for the TLC treatment. The addition of clay (Kaolinite) to the TLC treatments prevented mortality, but did not decrease the loss in biomass. While TLC treatments pose a less laborious alternative for AC amendments in the field, the results of this study show that it has lower remediation potential and could be more harmful to the benthic fauna.


Subject(s)
Charcoal/chemistry , Geologic Sediments/chemistry , Animals , Oligochaeta/drug effects
12.
J Hazard Mater ; 318: 388-395, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27450330

ABSTRACT

The biological effects of activated carbon (AC) amendments in sediments were studied with the midge Chironomus riparius. The effects on larvae growth were studied using three different AC particles sizes (PAC: 90% <63µm, MAC: ø 63-200µm and GAC: ø 420-1700µm). The long- term effects of MAC were studied in an emergence experiment over two generations (P, F1), together with larvae growth experiment over three generations (P, F1, F2). Retarded growth and development of the larvae were observed in the two smallest particle sizes (PAC and MAC), as well as morphological changes in the gut wall microvilli layer studied from transmission electron micrographs. In addition, at high AC treatments the larvae reaching fourth instar stage were of a smaller size compared to the controls. With PAC treatment AC amendment dosages higher than 1% of sediment dry weight induced mortality. In the emergence experiment there was an indication of a delay in F1 generation emergence. Male dry weight (dw) in P generation was significantly reduced in the 2.5% MAC treatment. The effects of AC amendments were more obvious in the C. riparius larvae compared to the effects seen in emerging adults exposed to AC-amended sediment during the larval stage.


Subject(s)
Charcoal/chemistry , Chironomidae/metabolism , Geologic Sediments/chemistry , Animals , Charcoal/toxicity , Chironomidae/drug effects , Chironomidae/growth & development , Growth/drug effects , Larva/drug effects , Larva/growth & development , Particle Size , Reproduction/drug effects , Sex Ratio , Survival Analysis , Water/analysis , Water Pollutants, Chemical
13.
Environ Sci Technol ; 50(10): 5252-60, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27100921

ABSTRACT

The nonbiting midge Chironomus riparius was used to study the remediation potential and secondary effects of activated carbon (AC, ø 63-200 µm) in PCB contaminated sediments. AC amendments efficiently reduced PCB bioavailability determined by Chironomus riparius bioaccumulation tests and passive samplers. PCBs were shown to transfer from larvae to adults. Lower PCB concentrations were observed in adult midges emerging from AC amended compared to unamended sediments. Increased reproduction, survival, larval growth and gut wall microvilli length were observed with low AC dose (0.5% sediment dw) compared to unamended sediment, indicating an improved success of larvae in the sediment with low organic carbon content. On the other hand, higher AC doses (2.5% sediment dw) caused adverse effects on emergence and larval development. In addition, morphological changes in the gut wall microvilli layer were observed. This study showed that the secondary effects of AC amendments are dependent on the dose and the sediment characteristics. Metamorphic species, such as C. riparius, may act as a vector for organic pollutants from aquatic to terrestrial ecosystems and according to this study the AC amendments may reduce this transport.


Subject(s)
Chironomidae/drug effects , Geologic Sediments , Animals , Carbon/pharmacology , Charcoal/pharmacology , Polychlorinated Biphenyls
14.
Water Res ; 85: 413-21, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26364225

ABSTRACT

The sorption efficiency and possible secondary effects of activated carbon (AC) (ø 63-200 µm) was studied with Lumbriculus variegatus in three PCB contaminated sediments applying long AC-sediment contact time (3 years). AC amendment efficiently reduced PCB bioavailability as determined with both, L. variegatus bioaccumulation test and passive samplers. However, dose related secondary effects of AC on egestion rate and biomass were observed (applied doses 0.25% and 2.5% sediment dry weight). The sorption capacity and secondary effects remained similar when the experiments were repeated after three years of AC-sediment contact time. Further, transmission electron microscopy (TEM) samples revealed morphological changes in the L. variegatus gut wall microvilli layer. Sediment properties affected both sorption efficiency and secondary effects, but 2.5% AC addition had significant effects regardless of the sediment. In, conclusion, AC is an efficient and stable sorbent to decrease the bioavailability of PCBs. However, sediment dwelling organisms, such as Oligochaete worms in this study, may be sensitive to the carbon amendments. The secondary effects and possible morphological changes in benthic organisms should not be overlooked as in many cases they form the basis of the aquatic food webs.


Subject(s)
Charcoal/chemistry , Oligochaeta/drug effects , Polychlorinated Biphenyls/toxicity , Water Pollutants, Chemical/toxicity , Animals , Biological Availability , Geologic Sediments , Lipid Metabolism/drug effects , Microscopy, Electron, Transmission , Oligochaeta/physiology , Oligochaeta/ultrastructure , Polychlorinated Biphenyls/metabolism , Reproduction/drug effects , Water Pollutants, Chemical/metabolism
15.
Environ Pollut ; 206: 17-23, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26142746

ABSTRACT

The possible toxicity of nanoparticles (NPs) to aquatic organisms needs to be investigated for chronic effects at low concentrations. Chronic effects of carbon NPs, fullerenesC60, on the midges of Chironomus riparius at different life stages on larvae and adult midges were investigated. Sediment associated fullerenesC60 were studied by 10-day growth and 42-day emergence tests with artificial sediment at nominal concentration ranges 0.0004-80 mg/kg dry weight. The body length decreased in the lower tested concentrations (0.0025-20 mg/kg), but the effect vanished with higher concentrations. Delayed emergence rate observed at 0.5 mg/kg. The observed effects correlated with analyzed sediment particle sizes indicating that small agglomerates of fullerene have more significant effects on C. riparius than larger agglomerates observed with higher C60 doses. The results reveal that fullerene may pose risks to benthic organisms, emerging as changes in the ecotoxic parameters studied here which inflects by the survival of the population.


Subject(s)
Chironomidae/growth & development , Fullerenes/toxicity , Geologic Sediments/analysis , Larva/drug effects , Water Pollutants, Chemical/toxicity , Animals , Chironomidae/drug effects , Female , Larva/growth & development , Male
16.
Environ Toxicol Chem ; 34(11): 2463-74, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26053463

ABSTRACT

Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course.


Subject(s)
Geologic Sediments/chemistry , Lakes/chemistry , Polychlorinated Biphenyls/analysis , Water Pollutants, Chemical/analysis , Animals , Biota , Bivalvia/chemistry , Bivalvia/metabolism , Environmental Monitoring , Oligochaeta/chemistry , Oligochaeta/metabolism , Water Pollutants, Chemical/chemistry
17.
J Hazard Mater ; 286: 41-7, 2015 Apr 09.
Article in English | MEDLINE | ID: mdl-25550081

ABSTRACT

Addition of activated carbon (AC) or biochar (BC) to sediment to reduce the chemical and biological availability of organic contaminants is a promising in-situ remediation technology. But concerns about leaving the adsorbed pollutants in place motivate research into sorbent recovery methods. This study explores the use of magnetic sorbents. A coal-based magnetic activated carbon (MAC) was identified as the strongest of four AC and BC derived magnetic sorbents for polycyclic aromatic hydrocarbons (PAHs) remediation. An 8.1% MAC amendment (w/w, equal to 5% AC content) was found to be as effective as 5% (w/w) pristine AC in reducing aqueous PAHs within three months by 98%. MAC recovery from sediment after three months was 77%, and incomplete MAC recovery had both, positive and negative effects. A slight rebound of aqueous PAH concentrations was observed following the MAC recovery, but aqueous PAH concentrations then dropped again after six months, likely due to the presence of the 23% unrecovered MAC. On the other hand, the 77% recovery of the 8.1% MAC dose was insufficient to reduce ecotoxic effects of fine grained AC or MAC amendment on the egestion rate, growth and reproduction of the AC sensitive species Lumbriculus variegatus.


Subject(s)
Carbon/chemistry , Environmental Restoration and Remediation/methods , Polycyclic Aromatic Hydrocarbons/chemistry , Water Purification/methods , Animals , Charcoal/chemistry , Coal , Ecology , Geologic Sediments , Kinetics , Magnetics , Microscopy, Electron, Scanning , Oligochaeta/drug effects , Particle Size , Reproducibility of Results , Water/chemistry , Water Pollutants/chemistry , Water Pollutants, Chemical/analysis
18.
Environ Sci Technol ; 46(23): 12895-903, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23153215

ABSTRACT

Activated carbon (AC) amendment is a recently developed sediment remediation method. The strong hydrophobic organic contaminant sorption efficiency of AC has been shown in several studies, but effects on benthic organisms require more investigation. The AC induced effects on egestion rate, growth and reproduction of Lumbriculus variegatus were studied by applying bituminous coal based AC in three different particle size fractions, namely <63 µm (90%, AC(p)), 63-200 µm (AC(m)) and 1000 µm (AC(g)), to natural uncontaminated (HS) and artificial sediment (AS). Egestion rate, growth and reproduction decreased with increasing AC concentration and finer AC particle fractions, effects being stronger on HS than on AS sediment. Lipid content in AS was reduced already at the lowest AC doses applied (AC(p) and AC(m) 0.05%, AC(g) 0.25%). In addition, hormesis-like response was observed in growth (AS) and reproduction (AS, HS) indicating that AC may disturb organisms even at very low doses. Potential ecological effects need to be further evaluated in an amendment- and site-specific manner.


Subject(s)
Charcoal/metabolism , Geologic Sediments/analysis , Oligochaeta/drug effects , Oligochaeta/physiology , Adsorption , Animals , Charcoal/chemistry , Coal/analysis , Environmental Restoration and Remediation/methods , Reproduction/drug effects , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...