Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Clin Exp Pharmacol Physiol ; 28(9): 773-5, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11560127

ABSTRACT

1. An elevation in blood pressure has been consistently observed 24 h after adrenocorticotropic hormone (ACTH) administration and is caused by increased ACTH-stimulated cortisol secretion, in association with increased cardiac output. The aim of the present study was to investigate the previously undefined time of onset of this increase in blood pressure in normal humans. 2. Ten normal healthy volunteers received 250 mg ACTH-[1-24], in 500 mL normal saline, infused at a constant rate over 8 h. Six subjects also received a placebo infusion (normal saline only). Blood pressure, heart rate and cortisol levels were determined hourly. Adrenocorticotropic hormone (ACTH-[1-24] plus native ACTH) was measured at 0, 1, 7 and 8 h. 3. Infusion of ACTH-[1-24] produced maximal secretion rates of cortisol, resulting in a mean peak plasma level of 985 +/- 46 nmol/L at 8 h. In response, blood pressure and heart rate rose significantly by 2 h and remained generally elevated for the duration of the infusion. 4. The early onset of haemodynamic responses is consistent with classical steroid receptor-mediated genomic mechanisms, but could be due non-genomic mechanisms. 5. The cardiovascular consequences of therapeutic use of ACTH are well recognized. This results of the present study suggest that even diagnostic administration of ACTH, delivered over a few hours, may raise blood pressure.


Subject(s)
Blood Pressure/drug effects , Cosyntropin/administration & dosage , Adrenocorticotropic Hormone/administration & dosage , Adrenocorticotropic Hormone/blood , Adult , Cosyntropin/blood , Female , Heart Rate/drug effects , Humans , Hydrocortisone/blood , Male , Time Factors
2.
J Neuroendocrinol ; 13(6): 524-30, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11412339

ABSTRACT

The insulin hypoglycemia test (IHT) is widely regarded as the "gold standard" for dynamic stimulation of the hypothalamic-pituitary-adrenal (HPA) axis. This study aimed to investigate the temporal relationship between a rapid decrease in plasma glucose and the corresponding rise in plasma adenocorticotropic hormone (ACTH), and to assess the reproducibility of hormone responses to hypoglycemia in normal humans. Ten normal subjects underwent IHTs, using an insulin dose of 0.15 U/kg. Of these, eight had a second IHT (IHT2) and three went on to a third test (IHT3). Plasma ACTH and cortisol were measured at 15-min intervals and, additionally, in four IHT2s and the three IHT3s, ACTH was measured at 2.5- or 5-min intervals. Mean glucose nadirs and mean ACTH and cortisol responses were not significantly different between IHT1, IHT2 and IHT3. Combined data from all 21 tests showed the magnitude of the cortisol responses, but not the ACTH responses, correlated significantly with the depth and duration of hypoglycemia. All subjects achieved glucose concentrations of of < or = 1.6 mmol/l before any detectable rise in ACTH occurred. In the seven tests performed with frequent sampling, an ACTH rise never preceded the glucose nadir, but occurred at the nadir, or up to 15 min after. On repeat testing, peak ACTH levels varied markedly within individuals, whereas peak cortisol levels were more reproducible (mean coefficient of variation 7%). In conclusion, hypoglycemia of < or = 1.6 mmol/l was sufficient to cause stimulation of the HPA axis in all 21 IHTs conducted in normal subjects. Nonetheless, our data cannot reveal whether higher glucose nadirs would stimulate increased HPA axis activity in all subjects. Overall, the cortisol response to hypoglycemia is more reproducible than the ACTH response but, in an individual subject, the difference in peak cortisol between two IHTs may exceed 100 nmol/l.


Subject(s)
Hypoglycemia/blood , Insulin , Adrenal Glands/physiopathology , Adrenocorticotropic Hormone/blood , Adult , Blood Glucose/metabolism , Female , Humans , Hydrocortisone/blood , Hypoglycemia/chemically induced , Hypothalamo-Hypophyseal System/physiopathology , Insulin/administration & dosage , Male , Middle Aged , Reproducibility of Results
3.
Clin Endocrinol (Oxf) ; 55(5): 625-33, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11894974

ABSTRACT

OBJECTIVES: Low doses of ACTH [1-24] (0.1, 0.5 and 1.0 microg per 1.73 m2) may provide a more physiological level of adrenal stimulation than the standard 250 microg test, but not all studies have concluded that the 1.0 microg is a more sensitive screening test for central hypoadrenalism. Eight-hour infusions of high dose ACTH [1-24] have also been suggested as a means of assessing the adrenals' capacity for sustained cortisol secretion. In this study, we compared the diagnostic accuracy of three low dose ACTH tests (LDTs) and the 8-h infusion with the standard 250 microg test (HDT) and the insulin hypoglycaemia test (IHT) in patients with hypothalamic-pituitary disease. SUBJECTS AND DESIGN: Three groups of subjects were studied. A healthy control group (group 1, n = 9) and 33 patients with known hypothalamic or pituitary disease who were divided into group 2 (n = 12, underwent IHT) and group 3 (n = 21, IHT contraindicated). Six different tests were performed: a standard IHT (0.15 U/kg soluble insulin); a 60-minute 250 microg HDT; three different LDTs using 0.1 microg, 0.5 microg and 1.0 microg (all per 1.73 m2); and an 8-h infusion test (250 microg ACTH [1-24] at a constant rate over 8 h). RESULTS: Nine out of the 12 patients in group 2 failed the IHT. Three out of 12 patients from group 2 who clearly passed the IHT, also passed all the ACTH [1-24] stimulation tests. Seven of the 9 patients who failed the IHT, failed by a clear margin (peak cortisol < 85% of the lowest normal). Two of the 7 also failed all the ACTH [1-24] tests. Five of the 7 patients had discordant results, four passed the 0.1 LDT, one (out of four) passed the 0.5 LDT, none (out of three) passed the 1.0 LDT, two passed the HDT and three passed the 8-h test. Two patients were regarded as borderline fails in the IHT. Both passed the ACTH [1-24] tests, although one was a borderline pass in the 8-h test. Only five out of the 21 patients in group 3 showed discordance between the HDT and the LDTs. One patient passed the HDT and failed the 0.1 LDT, four patients failed the HDT but passed some of the different LDTS. CONCLUSIONS: We conclude that in the diagnosis of central hypoadrenalism, ACTH [1-24] stimulation tests may give misleading results compared to the IHT. The use of low bolus doses of ACTH [1-24] (1.0, 0.5 or 0.1 microg) or a high dose prolonged infusion does not greatly improve the sensitivity of ACTH [1-24] testing. Dynamic tests that provide a central stimulus remain preferable in the assessment of patients with suspected ACTH deficiency.


Subject(s)
Adrenal Glands/metabolism , Cosyntropin , Hydrocortisone/blood , Hypothalamic Diseases/physiopathology , Pituitary Diseases/physiopathology , Adult , Aged , Aged, 80 and over , Case-Control Studies , Cosyntropin/administration & dosage , Drug Administration Schedule , Female , Humans , Infusions, Intravenous , Injections, Intravenous , Insulin , Male , Middle Aged , Predictive Value of Tests , Single-Blind Method , Stimulation, Chemical
4.
J Neuroendocrinol ; 12(2): 141-5, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10718909

ABSTRACT

Leptin, produced by adipocytes, has homeostatic effects on body fat mass through inhibition of appetite and stimulation of the sympathetic nervous system. Several studies have reported that high-dose exogenous glucocorticoids increase circulating leptin concentrations in humans. Conversely, leptin has inhibitory effects on the hypothalamic-pituitary-adrenal (HPA) axis, both at the hypothalamic and adrenal levels. We hypothesized that acute hypercortisolism, in the physiological range, may not alter leptin secretion. Four stimuli of the HPA axis were administered to eight healthy male volunteers in a placebo-controlled study. On separate afternoons, in a randomised order, fasting subjects received i.v. injections of saline, naloxone (125 microg/kg); vasopressin (0.0143 IU/kg); naloxone and vasopressin in combination; or insulin (0.15 U/kg; a dose sufficient to induce hypoglycaemia). Plasma concentrations of adrenocorticotrophic hormone (ACTH), cortisol and leptin were measured before and for 120 min after the injection. The cortisol secretory response was greatest after insulin-hypoglycaemia, this response was significantly greater than that following naloxone, naloxone/vasopressin, or vasopressin alone. Despite the cortisol release, leptin concentrations were not increased after any stimulus. Insulin-hypoglycaemia was associated with a decrease in leptin concentration at 60 and 90 min, while naloxone did not alter leptin concentrations. However, basal leptin concentrations were positively correlated with integrated ACTH and cortisol responses to naloxone, but did not correlate with ACTH or cortisol responses to the other stimuli. Thus acute elevations of plasma cortisol, in the physiological range, do not appear to influence plasma leptin concentrations. The fall in plasma leptin concentration after insulin-induced hypoglycaemia may reflect catecholamine secretion after this stimulus.


Subject(s)
Hypothalamo-Hypophyseal System/drug effects , Leptin/administration & dosage , Leptin/blood , Pituitary-Adrenal System/drug effects , Adrenocorticotropic Hormone/blood , Adult , Humans , Hydrocortisone/blood , Hypoglycemia/physiopathology , Hypoglycemic Agents/administration & dosage , Hypothalamo-Hypophyseal System/physiology , Insulin/administration & dosage , Male , Middle Aged , Naloxone/administration & dosage , Narcotic Antagonists/administration & dosage , Pituitary-Adrenal System/physiology , Vasoconstrictor Agents/administration & dosage , Vasopressins/administration & dosage
5.
J Clin Endocrinol Metab ; 84(10): 3648-55, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10523009

ABSTRACT

The efficacy of the standard high dose ACTH stimulation test (HDT), using a pharmacological 250-microg dose of synthetic ACTH-(1-24), in the diagnosis of central hypoadrenalism is controversial. The insulin hypoglycemia test is widely regarded as the gold standard dynamic stimulation test of the hypothalamo-pituitary-adrenal (HPA) axis that provides the most reliable assessment of HPA axis integrity and reserve. Alternatively, a prolonged infusion of ACTH causes a continuing rise in plasma cortisol levels that may predict the adrenals' capacity to respond to severe ongoing stress. In nine normal subjects, we compared plasma ACTH and cortisol levels produced by three i.v. bolus low doses of ACTH-(1-24) (0.1, 0.5, and 1.0 microg/1.73 m2; LDTs) with those stimulated by hypoglycemia (0.15 U/kg insulin) and with the cortisol response to a standard 250-microg dose of ACTH-(1-24). The normal cortisol response to an 8-h ACTH-(1-24) infusion (250 microg at a constant rate over 8 h) was determined using three modern cortisol assays: a high pressure liquid chromatography method (HPLC), a fluorescence polarization immunoassay (FPIA), and a standard RIA. In the LDTs, stepwise increases in mean peak plasma ACTH were observed (12.4 +/- 2.0, 48.2 +/- 7.2, 120.2 +/- 15.5 pmol/L for the 0.1-, 0.5-, and 1.0-microg LDTs, respectively; P values all <0.0022 when comparing peak values between tests). The peak plasma ACTH level after insulin-induced hypoglycemia was significantly lower than that produced in the 1.0-microg LDT (69.6 +/- 9.3 vs. 120.2 +/- 15.5 pmol/L; P < 0.0002), but was higher than that obtained during the 0.5-microg LDT (69.6 +/- 9.3 vs. 48.2 +/- 7.2 pmol/L; P < 0.02). In the LDTs, statistically different, dose-dependent increases in peak cortisol concentration occurred (355 +/- 16, 432 +/- 13, and 482 +/- 23 nmol/L; greatest P value is 0.0283 for comparisons between all tests). The peak cortisol levels achieved during the LDTs were very different from those during the HDT (mean peak cortisol, 580 +/- 27 nmol/L; all P values <0.00009. However, the mean 30 min response in the 1.0-microg LDT did not differ from that in the HDT (471 +/- 22 vs. 492 +/- 22 nmol/L; P = 0.2). In the 8-h ACTH infusion test, plasma cortisol concentrations progressively increased, reaching peak levels much higher than those in the HDT [995 +/- 50 vs. 580 +/- 27 nmol/L (HPLC) and 1326 +/- 100 vs 759 +/- 31 nmol/L (FPIA)]. Significant differences in the basal, 1 h, and peak cortisol levels as determined by the three different assay methods (HPLC, FPIA, and RIA) were observed in the 8-h infusion tests. Similarly, in the HDTs there were significant differences in the mean 30 and 60 min cortisol levels as measured by HPLC compared with those determined by FPIA. We conclude that up to 30 min postinjection, 1.0 microg/1.73 m2 ACTH-(1-24) stimulates maximal adrenocortical secretion. Similar lower normal limits at 30 min may be applied in the 1.0-microg LDT and the HDT, but not when lower doses of ACTH-(1-24) are administered. The peak plasma ACTH level produced in the 1.0-microg LDT is higher than in the insulin hypoglycemia test, but is of the same order of magnitude. The peak cortisol concentration obtained during an 8-h synthetic ACTH-(1-24) infusion is considerably higher than that stimulated by a standard bolus 250-microg dose, potentially providing a means of evaluating the adrenocortical capacity to maintain maximal cortisol secretion. Appropriate interpretation of any of these tests of HPA axis function relies on the accurate determination of normal response ranges, which may vary significantly depending on the cortisol assay used.


Subject(s)
Adrenocorticotropic Hormone/blood , Cosyntropin , Hypoglycemia/blood , Adult , Chromatography, High Pressure Liquid , Cosyntropin/administration & dosage , Dose-Response Relationship, Drug , Female , Fluorescence Polarization Immunoassay , Humans , Hydrocortisone/blood , Hypoglycemia/chemically induced , Insulin , Male , Middle Aged , Radioimmunoassay , Reference Values , Single-Blind Method , Time Factors
7.
J Clin Endocrinol Metab ; 82(3): 812-7, 1997 Mar.
Article in English | MEDLINE | ID: mdl-9062488

ABSTRACT

PGs influence ACTH secretion. However, their specific role in modulating the activity of the human hypothalamic-pituitary-adrenal (HPA) axis remains unclear. Acetylsalicylic acid (aspirin) inhibits the synthesis of PGs from arachidonic acid by blocking the cyclooxygenase pathway. In this study we administered a single, clinically relevant dose of aspirin before HPA axis stimulation by a bolus dose of iv arginine vasopressin (AVP) to seven normal males using a randomized, placebo-controlled, single blinded design. Aspirin significantly reduced the cortisol response to AVP [mean peak increase from basal, 221.1 +/- 20.1 vs. 165.4 +/- 22.5 nmol/L (P = 0.0456); mean integrated response, 11,199.3 +/- 1,560.0 vs. 6,162.3 +/- 1,398.6 nmol.min/L (P = 0.0116) for placebo aspirin/AVP and aspirin/ AVP, respectively]. The ACTH response was reduced, but did not reach statistical significance [mean peak increase from basal, 7.5 +/- 2.2 vs. 4.3 +/- 0.3 pmol/L (P = 0.0563); mean integrated response, 142.6 +/- 36.0 vs. 96.2 +/- 8.7 pmol.min/L (P = 0.12) for placebo aspirin/ AVP and aspirin/AVP, respectively]. PGs may influence ACTH secretion by being stimulatory or inhibitory to the HPA axis at different levels, such as hypothalamic or pituitary. Which effect predominates in vivo during dynamic activation of the axis may depend on the level at which the secretory stimulus acts. We showed that when normal male volunteers were treated with the PG synthesis inhibitor, aspirin, they had a blunted HPA axis response to the pituitary corticotroph stimulator, AVP.


Subject(s)
Arginine Vasopressin/antagonists & inhibitors , Arginine Vasopressin/pharmacology , Aspirin/pharmacology , Cyclooxygenase Inhibitors/pharmacology , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Adolescent , Adrenocorticotropic Hormone/blood , Adult , Humans , Hydrocortisone/antagonists & inhibitors , Hydrocortisone/blood , Male , Reference Values , Single-Blind Method
SELECTION OF CITATIONS
SEARCH DETAIL