Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39078690

ABSTRACT

The advent of diffraction-limited storage rings (DLSRs) has boosted the brilliance or coherent flux by one to two orders of magnitude with respect to the previous generation. One consequence of this brilliance enhancement is an increase in the flux density or number of photons per unit of area and time, which opens new possibilities for the spatiotemporal resolution of X-ray imaging techniques. This paper studies the time-resolved microscopy capabilities of such facilities by benchmarking the ForMAX beamline at the MAX IV storage ring. It is demonstrated that this enhanced flux density using a single harmonic of the source allows micrometre-resolution time-resolved imaging at 2000 tomograms per second and 1.1 MHz 2D acquisition rates using the full dynamic range of the detector system.

2.
J Phys Chem Lett ; 10(7): 1634-1638, 2019 Apr 04.
Article in English | MEDLINE | ID: mdl-30900899

ABSTRACT

Films of carbon tetrachloride (CCl4) confined in slit geometry between two flat diamond substrates down to a few tens of Angstroms are studied by combining X-ray reflectivity with in-plane and out-of-plane X-ray scattering. The confined films form a heterogeneous structure with coexisting regions of liquid and crystalline phases. The liquid phase shows short-range ordering normal to the surfaces of the substrates. The experiments directly show the ability of the confinement to induce crystal objects, which is a long-discussed issue in the literature. The surface structure and morphology of the substrates may influence the actual realization of the crystalline phase in confinement.

3.
Phys Rev E ; 95(6-1): 062601, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28709299

ABSTRACT

Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

4.
Phys Chem Chem Phys ; 19(35): 23632-23641, 2017 Sep 13.
Article in English | MEDLINE | ID: mdl-28555218

ABSTRACT

Colloidal dispersions in confined geometries exhibit rich diffusive dynamics governed by an interplay between particle-particle and particle-wall interactions. This perspective reviews recent selected computational and experimental studies on diffusion of dense liquid-like dispersions in spatial confinement, with an emphasis on general physical concepts rather than system-specific details. The common thread is to analyse colloidal diffusion in confined geometries in terms of the local density experienced by the colloidal particles, viz. at the level of anisotropic pair densities, which have recently become experimentally accessible.

5.
J Colloid Interface Sci ; 484: 249-253, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27619384

ABSTRACT

We demonstrate a model-independent method for experimental determination of the relative surface excess of inorganic ions in binary liquid mixtures, based on grazing-incidence X-ray fluorescence. For this purpose, we probe the ion density profiles in a mixture of water and 2,6-dimethylpyridine containing a hydrophilic salt, potassium chloride. Thereby we demonstrate that the proposed method quantifies in a direct manner the difference between cation and anion excess adsorption in binary solvents with a resolution of one excess ion per 200nm2 or better.

6.
Phys Rev Lett ; 116(16): 167801, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27152823

ABSTRACT

The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries.

7.
Soft Matter ; 12(21): 4778-82, 2016 May 25.
Article in English | MEDLINE | ID: mdl-27112965

ABSTRACT

Surprising weak assembly behavior has lately been found in binary aqueous solvents containing antagonistic salt. The underlying mechanism is still under debate, particularly the role of ion size asymmetry. Here we use small-angle X-ray scattering to study the effect of ion size asymmetry on the mesoscale ordering in a binary solvent composed of water and 2,6-dimethylpyridine with added symmetrical quaternary ammonium salt. By systematically elongating the hydrocarbon side-chain lengths, and hence developing cation-to-anion size asymmetry, we provide the first experimental evidence of a gradual build-up of the solvent's mesoscale ordering. These results are in qualitative agreement with model-independent theoretical predictions.

8.
RSC Adv ; 6(106): 104246-104253, 2016 Nov 13.
Article in English | MEDLINE | ID: mdl-28066544

ABSTRACT

The self-assembly of nanoparticles on substrates is relevant for a variety of applications such as plasmonics, sensing devices and nanometer-sized electronics. We investigate the deposition of 60 nm spherical Au nanoparticles onto silicon dioxide (SiO2) substrates by changing the chemical treatment of the substrate and by that altering the surface charge. The deposition is characterized by scanning electron microscopy (SEM). Kelvin probe force microscopy (KPFM) was used to characterize the surface workfunction. The underlying physics involved in the deposition of nanoparticles was described by a model based on Derjaguin-Landau-Verwey-Overbeek (DLVO) theory combined with random sequential adsorption (RSA). The spatial statistical method Ripley's K-function was used to verify the DLVO-RSA model (ERSA). The statistical results also showed that the adhered particles exhibit a short-range order at distances below ~300 nm. This method can be used in future research to predict the deposition densities of charged nanoparticles onto charged surfaces.

9.
Langmuir ; 31(45): 12537-43, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26509355

ABSTRACT

We demonstrate that spatial confinement can be used to control the orientational and translational order of cubic nanoparticles. For this purpose we have combined X-ray scattering and scanning electron microscopy to study the ordering of iron oxide nanocubes that have self-assembled from toluene-based dispersions in nanofluidic channels. An analysis of scattering vector components with directions parallel and perpendicular to the slit walls shows that the confining walls induce a preferential parallel alignment of the nanocube (100) faces. Moreover, slit wall separations that are commensurate with an integer multiple of the edge length of the oleic acid-capped nanocubes result in a more pronounced translational order of the self-assembled arrays compared to incommensurate confinement. These results show that the confined assembly of anisotropic nanocrystals is a promising route to nanoscale devices with tunable anisotropic properties.

10.
Soft Matter ; 11(29): 5883-8, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26107528

ABSTRACT

Solid surfaces suspended in critical aqueous binary mixtures containing hydrophilic salt have recently been found to exhibit anomalous interactions, and a possible mechanism is provided by the asymmetric solvation preferences of weakly and strongly hydrophilic cations and anions, respectively. Here we address this mechanism by studying interfacial ion distributions in a critical binary mixture of water and 2,6-dimethylpyridine containing potassium chloride at temperatures below the lower critical point, using grazing-incidence X-ray fluorescence from the liquid-vapour interface. Our data provide direct and unambiguous experimental evidence for microscopic segregation of hydrophilic ions in critical aqueous binary mixtures, thereby supporting the important role of asymmetric ion solvation in the above mentioned anomalous force. However, the experimental data are only qualitatively reproduced by state-of-the-art theoretical calculations, demonstrating the need of a microscopic theoretical model including asymmetric ion solvation.

11.
Phys Chem Chem Phys ; 17(15): 9841-8, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25776932

ABSTRACT

The sol-gel synthesis of a silica based ionogel using the ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide (C6C1ImTFSI) as the solvent has been followed in situ by combined µ-focused X-ray scattering and µ-Raman spectroscopy. By covering the momentum transfer range 0.2 < q < 30 nm(-1) we probe the evolution of the characteristic peaks of the ionic liquid, associated with the existence of polar and non-polar domains, as a function of reaction time. Our detailed analysis of the small angle X-ray scattered (SAXS) pattern reveals that the nano-structure of the ionic liquid is partially retained during the sol-gel synthesis, as indicated by the broader yet distinguishable SAXS signatures. We also observe that the signature associated with the non-polar and polar domains shift to higher and lower q-values, respectively. Interestingly, this behavior correlates with the evolution of the chemical composition of the sol as probed by Raman spectroscopy. More precisely, we observe that both the nano-structural changes and the production of polar molecules arrest at the point of gelation. This is rationalized by the tendency of the reagents and products of the sol-gel reaction to locate in different portions of the nano-structure of the ionic liquid.

12.
J Chem Phys ; 141(9): 094501, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25194375

ABSTRACT

Packing frustration for confined fluids, i.e., the incompatibility between the preferred packing of the fluid particles and the packing constraints imposed by the confining surfaces, is studied for a dense hard-sphere fluid confined between planar hard surfaces at short separations. The detailed mechanism for the frustration is investigated via an analysis of the anisotropic pair distributions of the confined fluid, as obtained from integral equation theory for inhomogeneous fluids at pair correlation level within the anisotropic Percus-Yevick approximation. By examining the mean forces that arise from interparticle collisions around the periphery of each particle in the slit, we calculate the principal components of the mean force for the density profile--each component being the sum of collisional forces on a particle's hemisphere facing either surface. The variations of these components with the slit width give rise to rather intricate changes in the layer structure between the surfaces, but, as shown in this paper, the basis of these variations can be easily understood qualitatively and often also semi-quantitatively. It is found that the ordering of the fluid is in essence governed locally by the packing constraints at each single solid-fluid interface. A simple superposition of forces due to the presence of each surface gives surprisingly good estimates of the density profiles, but there remain nontrivial confinement effects that cannot be explained by superposition, most notably the magnitude of the excess adsorption of particles in the slit relative to bulk.

13.
J Chem Phys ; 139(16): 164701, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182058

ABSTRACT

Pair distributions of fluids confined between two surfaces at close distance are of fundamental importance for a variety of physical, chemical, and biological phenomena, such as interactions between macromolecules in solution, surface forces, and diffusion in narrow pores. However, in contrast to bulk fluids, properties of inhomogeneous fluids are seldom studied at the pair-distribution level. Motivated by recent experimental advances in determining anisotropic structure factors of confined fluids, we analyze theoretically the underlying anisotropic pair distributions of the archetypical hard-sphere fluid confined between two parallel hard surfaces using first-principles statistical mechanics of inhomogeneous fluids. For this purpose, we introduce an experimentally accessible ensemble-averaged local density correlation function and study its behavior as a function of confining slit width. Upon increasing the distance between the confining surfaces, we observe an alternating sequence of strongly anisotropic versus more isotropic local order. The latter is due to packing frustration of the spherical particles. This observation highlights the importance of studying inhomogeneous fluids at the pair-distribution level.


Subject(s)
Hydrodynamics , Models, Theoretical , Anisotropy
14.
Langmuir ; 28(28): 10409-14, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22724517

ABSTRACT

We report on an in-situ observation of the colloidal silver nanoparticle self-assembly into a close-packed monolayer at the air/water interface followed by a 2D to 3D transition. Using the fast tracking GISAXS technique, we were able to observe the immediate response to the compression of the self-assembled nanoparticle layer at the air/water interface and to identify all relevant intermediate stages including those far from the equilibrium. In particular, a new nonequilibrium phase before the monolayer collapse via the 2D to 3D transition was found that is inaccessible by the competing direct space imaging techniques such as the scanning and transmission electron microscopies due to the high water vapor pressure and surface tension.


Subject(s)
Metal Nanoparticles/chemistry , Silver/chemistry , Air , Colloids/chemistry , Particle Size , Surface Properties , Water/chemistry
15.
Phys Rev Lett ; 108(6): 065502, 2012 Feb 10.
Article in English | MEDLINE | ID: mdl-22401084

ABSTRACT

The structure of block copolymers results from the interplay between weak intermolecular forces, typically in the order of k(B)T per molecule. This is particularly true for block copolymer thin films in the presence of chemically patterned surfaces, where the different contributions to the total free energy, the interfacial and bulklike terms, have comparable magnitudes. Here, we report on the structures formed by block copolymers films equilibrated between two chemically patterned surfaces with orthogonal stripes. Our experiments and simulations reveal that the domains are continuous through the film and the interface between domains resembles the Scherk's first minimal surface. The impact of chemical patterns on block copolymer morphologies and the underlying physics gives insight into the nanofabrication of complex nanostructures with directed self-assembly using two engineered boundary conditions, as opposed to only one.

16.
J Synchrotron Radiat ; 17(4): 465-72, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20567078

ABSTRACT

An X-ray reflectivity theory on the determination of the density profile of a molecular liquid under nanometre confinement is presented. The confinement geometry acts like an X-ray interferometer, which consists of two opposing atomically flat single-crystal mica membranes with an intervening thin liquid film of variable thickness. The X-rays reflected from the parallel crystal planes (of known structure) and the layered liquid in between them (of unknown structure) interfere with one another, making X-ray reflectivity highly sensitive to the liquid's density profile along the confinement direction. An expression for the reflected intensity as a function of momentum transfer is given. The total structure factor intensity for the liquid-filled confinement device is derived as a sum of contributions from the inner and outer crystal terminations. The method presented readily distinguishes the confined liquid from the liquid adsorbed on the outer mica surfaces. It is illustrated for the molecular liquid tetrakis(trimethyl)siloxysilane, confined by two mica surfaces at a distance of 8.6 nm.

17.
J Phys Condens Matter ; 22(23): 235102, 2010 Jun 16.
Article in English | MEDLINE | ID: mdl-21393761

ABSTRACT

Ultrathin (<12 nm) films of tetrakis(trimethyl)siloxysilane (TTMSS) have been confined by atomically flat mica membranes in the presence and absence of applied normal forces. When applying normal forces, discrete film thickness transitions occur, each involving the expulsion of TTMSS molecules. Using optical interferometry we have measured the step size associated with a film thickness transition (7.5 Å for compressed, 8.4 Å for equilibrated films) to be smaller than the molecular diameter of 9.0 Å. Layering transitions with a discrete step size are commonly regarded as evidence for strong layering of the liquid's molecules in planes parallel to the confining surfaces and it is assumed that the layer spacing equals the measured periodicity of the oscillatory force profile. Using x-ray reflectivity (XRR), which directly yields the liquid's density profile along the confinement direction, we show that the layer spacing (10-11 Å) proves to be on average significantly larger than both the step size of a layering transition and the molecular diameter. We observe at least one boundary layer of different electron density and periodicity than the layers away from the surfaces.


Subject(s)
Organosilicon Compounds/chemistry , Oscillometry/methods , Silanes/chemistry , Aluminum Silicates/chemistry , Equipment Design , Interferometry/methods , Materials Testing , Normal Distribution , Surface Properties , Synchrotrons , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL