Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
Br J Dermatol ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820176

ABSTRACT

BACKGROUND: Recessive dystrophic epidermolysis bullosa (RDEB) is a blistering disease caused by mutations in the gene encoding type VII collagen (C7). RDEB is associated with fibrosis, which is responsible for severe complications. The phenotypic variability observed in RDEB siblings suggests that epigenetic modifications contribute to disease severity. Identifying epigenetic changes may help to uncover molecular mechanisms underlying RDEB pathogenesis and new therapeutic targets. OBJECTIVES: To investigate histone acetylation in RDEB skin and to explore histone deacetylase inhibitors (HDACis) as therapeutic molecules capable of counteracting fibrosis and disease progression in RDEB mice. METHODS: Acetylated histone levels were detected in human skin by immunofluorescence and in RDEB fibroblasts by ELISA. The effects of Givinostat and valproic acid (VPA) on RDEB fibroblast fibrotic behaviour were assessed by collagen-gel contraction assay, Western blot and immunocytofluorescence for α-smooth muscle actin, ELISA for released transforming growth factor-ß1 (TGF-ß1). RNA-seq was performed in HDACi- and vehicle-treated RDEB fibroblasts. VPA was systemically administered to RDEB mice, and effects on overt phenotype were monitored. Fibrosis was investigated in the skin using histological and immunofluorescence analyses. Eye and tongue defects were examined microscopically. Mass spectrometry proteomics was performed on skin protein extracts from VPA-treated RDEB and control mice. RESULTS: Histone acetylation decreases in RDEB skin and primary fibroblasts. RDEB fibroblasts treated with HDACis lowered fibrotic traits including contractility, TGF-ß1 release, and proliferation. VPA administration to RDEB mice mitigated severe manifestations affecting eyes and paws. These effects were associated with fibrosis inhibition. Proteomic analysis of mouse skin revealed that VPA almost normalised protein sets involved in protein synthesis and immune response, processes linked to the increased susceptibility to cancer and bacterial infections observed in RDEB patients. CONCLUSIONS: Dysregulated histone acetylation contributes to RDEB pathogenesis by facilitating the progression of fibrosis. Repurposing of HDACi could be considered for disease-modifying treatments of RDEB.

2.
J Invest Dermatol ; 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38570029

ABSTRACT

Fibronectin serves as a platform to guide and facilitate deposition of collagen and fibrillin microfibrils. During development of fibrotic diseases, altered fibronectin deposition in the extracellular matrix (ECM) is generally an early event. After this, dysregulated organization of fibrillins and fibrillar collagens occurs. Because fibronectin is an essential orchestrator of healthy ECM, perturbation of its ECM-organizational capacity may be involved in development of fibrosis. To investigate this, we employed recessive dystrophic epidermolysis bullosa as a disease model with progressive, severe dermal fibrosis. Fibroblasts from donors with recessive dystrophic epidermolysis bullosa in 2-dimensional and 3-dimensional cultures displayed dysregulated fibronectin deposition. Our analyses revealed that increase of profibrotic dipeptidyl peptidase-4-positive fibroblasts coincides with altered fibronectin deposition. Dipeptidyl peptidase-4 inhibitors normalized deposition of fibronectin and subsequently of fibrillin microfibrils and collagen I. Intriguingly, proteomics and inhibitor and mutagenesis studies disclosed that dipeptidyl peptidase-4 modulates ECM deposition through the proteolysis of the fibronectin N-terminus. Our study provides mechanistic insights into the observed profibrotic activities of dipeptidyl peptidase-4 and extends the understanding of fibronectin-guided ECM assembly in health and disease.

5.
Int J Mol Sci ; 25(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38255836

ABSTRACT

Antisense oligonucleotides (ASOs) represent an emerging therapeutic platform for targeting genetic diseases by influencing various aspects of (pre-)mRNA biology, such as splicing, stability, and translation. In this study, we investigated the potential of modulating the splicing pattern in recessive dystrophic epidermolysis bullosa (RDEB) patient cells carrying a frequent genomic variant (c.425A > G) that disrupts splicing in the COL7A1 gene by using short 2'-O-(2-Methoxyethyl) oligoribo-nucleotides (2'-MOE ASOs). COL7A1-encoded type VII collagen (C7) forms the anchoring fibrils within the skin that are essential for the attachment of the epidermis to the underlying dermis. As such, gene variants of COL7A1 leading to functionally impaired or absent C7 manifest in the form of extensive blistering and wounding. The severity of the disease pattern warrants the development of novel therapies for patients. The c.425A > G variant at the COL7A1 exon 3/intron 3 junction lowers the efficiency of splicing at this junction, resulting in non-functional C7 transcripts. However, we found that correct splicing still occurs, albeit at a very low level, highlighting an opportunity for intervention by modulating the splicing reaction. We therefore screened 2'-MOE ASOs that bind along the COL7A1 target region ranging from exon 3 to the intron 3/exon 4 junction for their ability to modulate splicing. We identified ASOs capable of increasing the relative levels of correctly spliced COL7A1 transcripts by RT-PCR, sqRT-PCR, and ddPCR. Furthermore, RDEB-derived skin equivalents treated with one of the most promising ASOs exhibited an increase in full-length C7 expression and its accurate deposition along the basement membrane zone (BMZ).


Subject(s)
Epidermolysis Bullosa Dystrophica , Humans , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/therapy , RNA Splicing , Skin , Introns , RNA Precursors , Oligonucleotides, Antisense/genetics , Oligonucleotides, Antisense/therapeutic use , Collagen Type VII/genetics
7.
Nat Commun ; 14(1): 8020, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049428

ABSTRACT

BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-ß superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.


Subject(s)
Glycoproteins , Peptide Hydrolases , Humans , Glycoproteins/metabolism , Extracellular Matrix Proteins/metabolism , Morphogenesis , Intercellular Signaling Peptides and Proteins
8.
J Invest Dermatol ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38007090

ABSTRACT

Collagen VII forms anchoring fibrils that are essential for the stability of the skin and other epithelial organs. In addition to such structural functions, it is emerging that collagen VII fills instructive functions. Collagen VII is synthesized by both epithelial cells and fibroblasts. Genetic loss of collagen VII causes dystrophic epidermolysis bullosa, which manifests with chronic skin fragility and fibrosis. Significant progress has been made in developing therapies for dystrophic epidermolysis bullosa; however, such work has also raised questions on the importance of the cellular source of collagen VII for maintenance of tissue integrity and homeostasis. Toward this end, we engineered mice that kept the physiological expression of collagen VII only in epithelial cells or in fibroblasts. Our study revealed that production of collagen VII either by keratinocytes or fibroblasts alone is sufficient for creation of mechanically robust skin. Importantly, we also show tissue-diverse dependence on epithelial and mesenchymal production of collagen VII and provide support for limited amounts of collagen VII being sufficient for tissue protection. Furthermore, a disconnect between collagen VII abundance and anchoring fibril numbers supports the concept that restoration of fully physiological collagen VII levels may not be needed to achieve complete mechanical protection of dystrophic epidermolysis bullosa skin.

10.
J Cell Sci ; 136(15)2023 08 01.
Article in English | MEDLINE | ID: mdl-37522320

ABSTRACT

Hemidesmosomes are structural protein complexes localized at the interface of tissues with high mechanical demand and shear forces. Beyond tissue anchoring, hemidesmosomes have emerged as force-modulating structures important for translating mechanical cues into biochemical and transcriptional adaptation (i.e. mechanotransduction) across tissues. Here, we discuss the recent insights into the roles of hemidesmosomes in age-related tissue regeneration and aging in C. elegans, mice and humans. We highlight the emerging concept of preserved dynamic mechanoregulation of hemidesmosomes in tissue maintenance and healthy aging.


Subject(s)
Caenorhabditis elegans Proteins , Hemidesmosomes , Humans , Animals , Mice , Hemidesmosomes/metabolism , Caenorhabditis elegans/metabolism , Longevity , Mechanotransduction, Cellular , Caenorhabditis elegans Proteins/metabolism
11.
J Invest Dermatol ; 143(11): 2108-2119, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37327859

ABSTRACT

Dystrophic epidermolysis bullosa is a rare genetic skin disorder caused by COL7A1 sequence variations that result in type VII collagen deficits and cutaneous and extracutaneous manifestations. One serious complication of dystrophic epidermolysis bullosa is cutaneous squamous cell carcinoma, a leading driver of morbidity and mortality, especially among patients with recessive dystrophic epidermolysis bullosa. Type VII collagen deficits alter TGFß signaling and evoke multiple other cutaneous squamous cell carcinoma progression-promoting activities within epidermal microenvironments. This review examines cutaneous squamous cell carcinoma pathophysiology in dystrophic epidermolysis bullosa with a focus on known oncogenesis pathways at play and explores the idea that therapeutic type VII collagen replacement may reduce cutaneous squamous cell carcinoma risk.

12.
Basic Res Cardiol ; 118(1): 18, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37160529

ABSTRACT

Cardiovascular diseases (CVDs) remain the leading cause of death worldwide. Most cardiovascular deaths are caused by ischaemic heart diseases such as myocardial infarction (MI). Hereby atherosclerosis in the coronary arteries often precedes disease manifestation. Since tissue remodelling plays an important role in the development and progression of atherosclerosis as well as in outcome after MI, regulation of matrix metalloproteinases (MMPs) as the major ECM-degrading enzymes with diverse other functions is crucial. Here, we provide an overview of the expression profiles of MMPs in coronary artery and left ventricular tissue using publicly available data from whole tissue to single-cell resolution. To approach an association between MMP expression and the development and outcome of CVDs, we further review studies investigating polymorphisms in MMP genes since polymorphisms are known to have an impact on gene expression. This review therefore aims to shed light on the role of MMPs in atherosclerosis and MI by summarizing current knowledge from publically available datasets, human studies, and analyses of polymorphisms up to preclinical and clinical trials of pharmacological MMP inhibition.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Myocardial Infarction , Myocardial Ischemia , Humans , Coronary Artery Disease/genetics , Myocardial Infarction/genetics , Matrix Metalloproteinases
13.
Biomolecules ; 13(5)2023 04 25.
Article in English | MEDLINE | ID: mdl-37238610

ABSTRACT

Junctional epidermolysis bullosa (JEB) patients experience skin and epithelial fragility due to a pathological deficiency in genes associated with epidermal adhesion. Disease severity ranges from post-natal lethality to localized skin involvement with persistent blistering followed by granulation tissue formation and atrophic scarring. We evaluated the potential of utilizing Trametinib, an MEK inhibitor previously shown to target fibrosis, with and without the documented EB-anti-fibrotic Losartan for reducing disease severity in a mouse model of JEB; Lamc2jeb mice. We found that Trametinib treatment accelerated disease onset and decreased epidermal thickness, which was in large part ameliorated by Losartan treatment. Interestingly, a range of disease severity was observed in Trametinib-treated animals that tracked with epidermal thickness; those animals grouped with higher disease severity had thinner epidermis. To examine if the difference in severity was related to inflammation, we conducted immunohistochemistry for the immune cell markers CD3, CD4, CD8, and CD45 as well as the fibrotic marker αSMA in mouse ears. We used a positive pixel algorithm to analyze the resulting images and demonstrated that Trametinib caused a non-significant reduction in CD4 expression that inversely tracked with increased fibrotic severity. With the addition of Losartan to Trametinib, CD4 expression was similar to control. Together, these data suggest that Trametinib causes a reduction in both epidermal proliferation and immune cell infiltration/proliferation, with concurrent acceleration of skin fragility, while Losartan counteracts Trametinib's adverse effects in a mouse model of JEB.


Subject(s)
Epidermolysis Bullosa, Junctional , Mice , Animals , Epidermolysis Bullosa, Junctional/genetics , Epidermolysis Bullosa, Junctional/pathology , Losartan , Skin/pathology , Epidermis
14.
Int J Mol Sci ; 24(5)2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36901775

ABSTRACT

Mutations in the COL7A1 gene lead to malfunction, reduction or complete absence of type VII collagen (C7) in the skin's basement membrane zone (BMZ), impairing skin integrity. In epidermolysis bullosa (EB), more than 800 mutations in COL7A1 have been reported, leading to the dystrophic form of EB (DEB), a severe and rare skin blistering disease associated with a high risk of developing an aggressive form of squamous cell carcinoma. Here, we leveraged a previously described 3'-RTMS6m repair molecule to develop a non-viral, non-invasive and efficient RNA therapy to correct mutations within COL7A1 via spliceosome-mediated RNA trans-splicing (SMaRT). RTM-S6m, cloned into a non-viral minicircle-GFP vector, is capable of correcting all mutations occurring between exon 65 and exon 118 of COL7A1 via SMaRT. Transfection of the RTM into recessive dystrophic EB (RDEB) keratinocytes resulted in a trans-splicing efficiency of ~1.5% in keratinocytes and ~0.6% in fibroblasts, as confirmed on mRNA level via next-generation sequencing (NGS). Full-length C7 protein expression was primarily confirmed in vitro via immunofluorescence (IF) staining and Western blot analysis of transfected cells. Additionally, we complexed 3'-RTMS6m with a DDC642 liposomal carrier to deliver the RTM topically onto RDEB skin equivalents and were subsequently able to detect an accumulation of restored C7 within the basement membrane zone (BMZ). In summary, we transiently corrected COL7A1 mutations in vitro in RDEB keratinocytes and skin equivalents derived from RDEB keratinocytes and fibroblasts using a non-viral 3'-RTMS6m repair molecule.


Subject(s)
Epidermolysis Bullosa Dystrophica , Epidermolysis Bullosa , Humans , Trans-Splicing , Skin/metabolism , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa/genetics , Keratinocytes/metabolism , Collagen Type VII/genetics , Mutation
16.
Front Immunol ; 13: 945176, 2022.
Article in English | MEDLINE | ID: mdl-35958577

ABSTRACT

Skin blistering disorders are associated with inherited defects in proteins involved in the dermal-epidermal adhesion or autoantibodies targeting those proteins. Although blistering in hereditary epidermolysis bullosa (EB) is pathogenetically linked to genetic deficiency of distinct proteins of the epidermis or the dermal-epidermal junction, circulating autoantibodies against these proteins have also been identified in EB patients. So far, autoantibodies have been considered bystanders in EB and active pathogenicity of them in EB has not been disclosed. In sera of a cohort of 258 EB patients, we found by ELISA in 22% of the patients autoantibodies against the bullous pemphigoid antigen BP180. The titers correlated negatively with collagen VII skin expression and positively with disease severity. Among those patients, we identified six (2.33%) with clinical features of an autoimmune bullous disorder (AIBD) and positive indirect immunofluorescence (IIF) staining. In literature, we found four more cases of EB patients developing disease-aggravating AIBD. Co-existence of these two rare skin disorders suggests that EB patients have a predisposition for the development of AIBD. Our work highlights that EB patients with increased itch or blister formation should be evaluated for additional AIBD and repeated screening for changes in autoantibody titers and skin-binding specificities is advised.


Subject(s)
Autoimmune Diseases , Epidermolysis Bullosa , Autoantibodies , Autoimmune Diseases/diagnosis , Blister , Epidermolysis Bullosa/complications , Epidermolysis Bullosa/genetics , Humans , Skin
17.
JAMA Dermatol ; 158(9): 1057-1062, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35921091

ABSTRACT

Importance: Kidney-urinary tract (KUT) manifestations cause substantial morbidity in patients with junctional epidermolysis bullosa (JEB), but the spectrum of disease severity and the clinical course have been poorly characterized. Objective: To examine in a large cohort of patients with intermediate JEB the KUT manifestations, diagnostic and therapeutic procedures, genotype-phenotype correlations, and outcomes as a basis for recommendations, prognosis, and management. Design, Setting, and Participants: In this retrospective, longitudinal case series study, 99 patients with a diagnosis of JEB based on clinical and genetic findings who were treated in a single dermatology department in Freiburg, Germany, were assessed during an 18-year period (January 1, 2003, to December 31, 2021). Clinical, laboratory, and molecular genetic parameters were extracted from patients' medical records. Main Outcomes and Measures: Clinical characteristics, natural history, management of KUT manifestations, and genotype-phenotype correlations of intermediate JEB. Results: Of the 183 patients with JEB, 99 (54%) had intermediate JEB and were included in this cohort. The cohort included 49 female patients and 50 male patients. None of 49 female patients and 15 of 50 male patients had KUT involvement affecting different levels of the urinary tract, resulting in a prevalence of 30% for males; thus, the overall prevalence was 15%. The mean age at onset of KUT manifestations was 6.9 years (range, first weeks of life to 20 years; age was not available for 1 patient). Median follow-up after diagnosis of KUT involvement was 13 years (range, 3 months to 54 years). Patients with laminin 332 or integrin ß4 deficiency had at least 1 missense or splice site genetic variant, leading to residual expression of laminin 332 or integrin α6ß4, respectively. Severity of KUT complications did not correlate with the extent of skin involvement but with the affected protein. Conclusions and Relevance: Physicians and patients with JEB should be aware of the risk for KUT involvement in intermediate JEB, and physicians should apply interdisciplinary and individualized diagnostic and therapeutic procedures for management of these complications. Because this disorder is so rare, multicenter studies are required to make general recommendations.


Subject(s)
Epidermolysis Bullosa, Junctional , Urinary Tract , Epidermolysis Bullosa, Junctional/diagnosis , Epidermolysis Bullosa, Junctional/genetics , Female , Humans , Integrin alpha6beta4 , Integrin beta4 , Kidney/metabolism , Male , Retrospective Studies , Urinary Tract/metabolism
18.
Front Immunol ; 13: 883967, 2022.
Article in English | MEDLINE | ID: mdl-35464429

ABSTRACT

Collagen VII is the main constituent of the anchoring fibrils, important adhesive structures that attach the epidermis to the dermal extracellular matrix. Two disorders are caused by dysfunction of collagen VII, both characterized by skin and mucosa fragility, epidermolysis bullosa acquisita (EBA) and dystrophic epidermolysis bullosa (DEB). EBA and DEB share high clinical similarities with significant difference in patients' age of onset and pathogenesis. Our patients presented with severe and recalcitrant mechanobullous EBA with characteristic DIF, IIF and ELISA diagnostics. But in both women recessive COL7A1 variants were also found, in a monoallelic state. Collagen VII from EBA keratinocytes of our cases was significantly more vulnerable to proteolytic degradation than control keratinocytes, hinting that the heterozygous pathogenic variants were sufficient to destabilize the molecule in vitro. Thus, even if the amount and functionality of mutant and normal type VII collagen polypeptides is sufficient to assure dermal-epidermal adhesion in healthy individuals, the functionally-impaired proteins are probably more prone to development of autoantibodies against them. Our work suggests that testing for COL7A1 genetic variants should be considered in patients with EBA, which either have a patient history hinting towards underlying dystrophic epidermolysis bullosa or pose therapeutic challenges.


Subject(s)
Epidermolysis Bullosa Acquisita , Epidermolysis Bullosa Dystrophica , Autoantibodies , Collagen Type VII/genetics , Epidermolysis Bullosa Dystrophica/diagnosis , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/therapy , Female , Humans , Skin
19.
Eur J Immunol ; 52(9): 1396-1405, 2022 09.
Article in English | MEDLINE | ID: mdl-35443081

ABSTRACT

B-cell tolerance to self-antigen is an active process that requires the temporal and spatial integration of signals of defined intensity. In common variable immune deficiency disorders, CTLA-4 deficiency, autoimmune lymphoproliferative syndrome, or in collagen VII deficiency, genetic defects in molecules regulating development, activation, maturation, and ECM composition alter the generation of B cells, resulting in immunodeficiency. Paradoxically, at the same time, the defective immune processes favor autoantibody production and immunopathology through impaired establishment of tolerance. The development of systemic autoimmunity in the framework of defective BCR signaling is relatively unusual in genetic mouse models. In sharp contrast, such reduced signaling in humans is clearly linked to pathological autoimmunity. The molecular mechanisms by which tolerance is broken in these settings are only starting to be explored resulting in novel therapeutic interventions. For instance, in CTLA-4 deficiency, homeostasis can be restored by CTLA-4 Ig treatment. Following this example, the identification of the molecular targets causing the reduced signals and their restoration is a visionary way to reestablish tolerance and develop novel therapeutic avenues for immunopathologies.


Subject(s)
Autoimmunity , Immunologic Deficiency Syndromes , Animals , Antibodies , CTLA-4 Antigen , Humans , Immune Tolerance , Mice
20.
Pain ; 163(10): 2052-2060, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35311752

ABSTRACT

ABSTRACT: Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genetic condition in which mutations in the type VII collagen gene ( COL7A1 ) lead to decreased expression of this anchoring protein of the skin, causing the loss of stability at the dermo-epidermal junction. Most patients with RDEB experience neuropathic pain and itch due to the development of a small fibre neuropathy, characterised by decreased intraepidermal innervation and thermal hypoaesthesia. To understand the physiopathology of this neuropathy, we used a mouse model of RDEB (Col7a1 flNeo/flNeo ) and performed a detailed characterisation of the somatosensory system. Col7a1 flNeo/flNeo mice showed a decrease in heat sensitivity, an increase in spontaneous scratching, and a significant decrease in intraepidermal nerve fibre density in the hindpaw; these changes were distal because there was no significant loss of unmyelinated or myelinated fibres in the nerve trunk. Of interest, we observed a decrease in axon diameter in both myelinated and unmyelinated fibres. This axonal damage was not associated with inflammation of the dorsal root ganglion or central projection targets at the time of assessment. These results suggest that in RDEB, there is a distal degeneration of axons produced by exclusive damage of small fibres in the epidermis, and in contrast with traumatic and acute neuropathies, it does not induce sustained neuroinflammation. Thus, this animal model emphasizes the importance of a healthy cutaneous environment for maintenance of epidermal innervation and faithfully replicates the pathology in humans, offering the opportunity to use this model in the development of treatments for pain for patients with RDEB.


Subject(s)
Epidermolysis Bullosa Dystrophica , Small Fiber Neuropathy , Animals , Collagen Type VII/genetics , Collagen Type VII/metabolism , Disease Models, Animal , Epidermolysis Bullosa Dystrophica/complications , Epidermolysis Bullosa Dystrophica/genetics , Epidermolysis Bullosa Dystrophica/pathology , Humans , Mice , Mutation/genetics , Skin/metabolism , Small Fiber Neuropathy/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL