Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Nanoscale ; 16(30): 14275-14286, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-38952181

ABSTRACT

Biopolymer-based functional materials are essential for reducing the carbon footprint and providing high-quality lightweight materials suitable for packaging and thermal insulation. Here, cellulose nanocrystals (CNCs) were efficiently upcycled from post-consumer cotton clothing by TEMPO-mediated oxidation and HCl hydrolysis with a yield of 62% and combined with wood cellulose nanofibrils (CNFs) to produce anisotropic foams by unidirectional freeze-casting followed by freeze drying (FD) or supercritical-drying (SCD). Unidirectional freeze-casting resulted in foams with aligned macropores irrespective of the drying method, but the particle packing in the foam wall was significantly affected by how the ice was removed. The FD foams showed tightly packed and aligned CNC and CNF particles while the SCD foams displayed a more network-like structure in the foam walls. The SCD compared to FD foams had more pores smaller than 300 nm and higher specific surface area but they were more susceptible to moisture-induced shrinkage, especially at relative humidities (RH) > 50%. The FD and SCD foams displayed low radial thermal conductivity, and the FD foams displayed a higher mechanical strength and stiffness in compression in the direction of the aligned particles. Better understanding how drying influences the structural, thermal, mechanical and moisture-related properties of foams based on repurposed cotton is important for the development of sustainable nanostructured materials for various applications.

2.
Adv Sci (Weinh) ; 11(24): e2307921, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477181

ABSTRACT

Additive manufacturing (AM) is widely recognized as a versatile tool for achieving complex geometries and customized functionalities in designed materials. However, the challenge lies in selecting an appropriate AM method that simultaneously realizes desired microstructures and macroscopic geometrical designs in a single sample. This study presents a direct ink writing method for 3D printing intricate, high-fidelity macroscopic cellulose aerogel forms. The resulting aerogels exhibit tunable anisotropic mechanical and thermal characteristics by incorporating fibers of different length scales into the hydrogel inks. The alignment of nanofibers significantly enhances mechanical strength and thermal resistance, leading to higher thermal conductivities in the longitudinal direction (65 mW m-1 K-1) compared to the transverse direction (24 mW m-1 K-1). Moreover, the rehydration of printed cellulose aerogels for biomedical applications preserves their high surface area (≈300 m2 g-1) while significantly improving mechanical properties in the transverse direction. These printed cellulose aerogels demonstrate excellent cellular viability (>90% for NIH/3T3 fibroblasts) and exhibit robust antibacterial activity through in situ-grown silver nanoparticles.


Subject(s)
Cellulose , Printing, Three-Dimensional , Cellulose/chemistry , Mice , Animals , NIH 3T3 Cells , Gels/chemistry , Nanofibers/chemistry , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry
3.
Adv Sci (Weinh) ; 11(19): e2400403, 2024 May.
Article in English | MEDLINE | ID: mdl-38483033

ABSTRACT

Improving interface connectivity of magnetic nanoparticles in carbon aerogels is crucial, yet challenging for assembling lightweight, elastic, high-performance, and multifunctional carbon architectures. Here, an in situ growth strategy to achieve high dispersion of metal-organic frameworks (MOFs)-anchored cellulose nanofibrils to enhance the interface connection quality is proposed. Followed by a facile freeze-casting and carbonization treatment, sustainable biomimetic porous carbon aerogels with highly dispersed and closely connected MOF-derived magnetic nano-capsules are fabricated. Thanks to the tight interface bonding of nano-capsule microstructure, these aerogels showcase remarkable mechanical robustness and flexibility, tunable electrical conductivity and magnetization intensity, and excellent electromagnetic wave absorption performance. Achieving a reflection loss of -70.8 dB and a broadened effective absorption bandwidth of 6.0 GHz at a filling fraction of merely 2.2 wt.%, leading to a specific reflection loss of -1450 dB mm-1, surpassing all carbon-based aerogel absorbers so far reported. Meanwhile, the aerogel manifests high magnetic sensing sensibility and excellent thermal insulation. This work provides an extendable in situ growth strategy for synthesizing MOF-modified cellulose nanofibril structures, thereby promoting the development of high-value-added multifunctional magnetic carbon aerogels for applications in electromagnetic compatibility and protection, thermal management, diversified sensing, Internet of Things devices, and aerospace.

4.
Nanoscale ; 15(44): 17785-17792, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37909800

ABSTRACT

Proteins in solution tend to coat solid surfaces upon exposure. Depending on the nature of the surface, the environmental conditions, and the nature of the protein these adsorbed proteins may self-assemble into ordered, fibre-like structures called amyloids. Nanoparticulate surfaces, with their high surface to volume ratio, are particularly favourable to amyloid formation. Most prior research has focussed on either inorganic or organic nanoparticles in solution. In this research, we instead focus on aerogels created from TEMPO-oxidized cellulose nanofibers (TO-CNF) to serve as bio-based, three-dimensional amyloid templates with a tuneable surface chemistry. Previous research on the use of cellulose as a protein adsorption template has shown no evidence of a change in the secondary protein structure. Herein, however, with the aid of the reducing agent TCEP, we were able to induce the formation of amyloid-like 'worms' on the surface of TO-CNF aerogels. Furthermore, we demonstrate that the addition of the TO-CNF aerogel can also induce bulk aggregation under conditions where it previously did not exist. Finally, we show that the addition of the aerogel increases the rate of 'worm' formation in conditions where previous research has found a long lag-phase. Therefore, TO-CNF aerogels are shown to be excellent templates for inducing ordered protein aggregation.


Subject(s)
Nanofibers , Gels/chemistry , Nanofibers/chemistry , Cellulose/chemistry , Amyloidogenic Proteins , Adsorption
5.
Small ; 19(50): e2300771, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37691091

ABSTRACT

Diatoms have long been used as living biological indicators for the assessment of water quality in lakes and rivers worldwide. While this approach benefits from the great diversity of these unicellular algae, established protocols are time-consuming and require specialized equipment. Here, this work 3D prints diatom-laden hydrogels that can be used as a simple multiplex bio-indicator for water assessment. The hydrogel-based living materials are created with the help of a desktop extrusion-based printer using a suspension of diatoms, cellulose nanocrystals (CNC) and alginate as bio-ink constituents. Rheology and mechanical tests are employed to establish optimum bio-ink formulations, whereas cell culture experiments are utilized to evaluate the proliferation of the entrapped diatoms in the presence of selected water contaminants. Bioprinting of diatom-laden hydrogels is shown to be an enticing approach to generate living materials that can serve as low-cost bio-indicators for water quality assessment.


Subject(s)
Bioprinting , Diatoms , Bioprinting/methods , Water Quality , Hydrogels/chemistry , Rheology , Printing, Three-Dimensional , Tissue Engineering/methods , Tissue Scaffolds/chemistry , Ink
6.
Nanoscale Adv ; 5(19): 5276-5285, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37767031

ABSTRACT

Amyloid fibrils made from inexpensive hen egg white lysozyme (HEWL) are bio-based, bio-degradable and bio-compatible colloids with broad-spectrum antimicrobial activity, making them an attractive alternative to existing small-molecule antibiotics. Their surface activity leads to the formation of 2D foam films within a loop, similar to soap films when blowing bubbles. The stability of the foam was optimized by screening concentration and pH, which also revealed that the HEWL amyloid foams were actually stabilized by unconverted peptides unable to undergo amyloid self-assembly rather than the fibrils themselves. The 2D foam film was successfully deposited on different substrates to produce a homogenous coating layer with a thickness of roughly 30 nm. This was thick enough to shield the negative charge of dry cellulose nanopaper substrates, leading to a positively charged HEWL amyloid coating. The coating exhibited a broad-spectrum antimicrobial effect based on the interactions with the negatively charged cell walls and membranes of clinically relevant pathogens (Staphylococcus aureus, Escherichia coli and Candida albicans). The coating method presented here offers an alternative to existing techniques, such as dip and spray coating, in particular when optimized for continuous production. Based on the facile preparation and broad spectrum antimicrobial performance, we anticipate that these biohybrid materials could potentially be used in the biomedical sector as wound dressings.

7.
Biomacromolecules ; 24(9): 3961-3971, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37589321

ABSTRACT

While biomaterials have become indispensable for a wide range of tissue repair strategies, second removal procedures oftentimes needed in the case of non-bio-based and non-bioresorbable scaffolds are associated with significant drawbacks not only for the patient, including the risk of infection, impaired healing, or tissue damage, but also for the healthcare system in terms of cost and resources. New biopolymers are increasingly being investigated in the field of tissue regeneration, but their widespread use is still hampered by limitations regarding mechanical, biological, and functional performance when compared to traditional materials. Therefore, a common strategy to tune and broaden the final properties of biopolymers is through the effect of different reinforcing agents. This research work focused on the fabrication and characterization of a bio-based and bioresorbable composite material obtained by compounding a poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) matrix with acetylated cellulose nanocrystals (CNCs). The developed biocomposite was further processed to obtain three-dimensional scaffolds by additive manufacturing (AM). The 3D printability of the PHBH-CNC biocomposites was demonstrated by realizing different scaffold geometries, and the results of in vitro cell viability studies provided a clear indication of the cytocompatibility of the biocomposites. Moreover, the CNC content proved to be an important parameter in tuning the different functional properties of the scaffolds. It was demonstrated that the water affinity, surface roughness, and in vitro degradability rate of biocomposites increase with increasing CNC content. Therefore, this tailoring effect of CNC can expand the potential field of use of the PHBH biopolymer, making it an attractive candidate for a variety of tissue engineering applications.


Subject(s)
Cellulose , Poly A , Humans , Hydroxybutyrates , Printing, Three-Dimensional
8.
Int J Biol Macromol ; 242(Pt 3): 124869, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37201880

ABSTRACT

Food packaging plays an extremely important role in the global food chain, allowing for products to be shipped across long distances without spoiling. However, there is an increased need to both reduce plastic waste caused by traditional single-use plastic packaging and improve the overall functionality of packaging materials to extend shelf-life even further. Herein, we investigate composite mixtures based on cellulose nanofibers and carvacrol via stabilizing octenyl-succinic anhydride-modified epsilon polylysine (MɛPL-CNF) for active food packaging applications. The effects of epsilon polylysine (εPL) concentration and modification with octenyl-succinic anhydride (OSA) and carvacrol are evaluated with respect to composites morphology, mechanical, optical, antioxidant, and antimicrobial properties. We find that both increased εPL concentration and modification with OSA and carvacrol lead to films with increased antioxidant and antimicrobial properties, albeit at the expense of reduced mechanical performance. Importantly, when sprayed onto the surface of sliced apples, MεPL-CNF-mixtures are able to successfully delay/hinder enzymatic browning, suggesting the potential of such materials for a range of active food packaging applications.


Subject(s)
Anti-Infective Agents , Nanocomposites , Nanofibers , Polylysine , Cellulose , Succinic Anhydrides , Antioxidants/pharmacology , Anti-Infective Agents/pharmacology , Food Packaging/methods , Plastics
9.
J Colloid Interface Sci ; 641: 338-347, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36934581

ABSTRACT

Amyloid fibrils from inexpensive food proteins and nanocellulose are renewable and biodegradable materials with broad ranging applications, such as water purification, bioplastics and biomaterials. To improve the mechanical properties of hybrid amyloid-nanocellulose materials, their colloidal interactions need to be understood and tuned. A combination of turbidity and zeta potential measurements, rheology and atomic force microscopy point to the importance of electrostatic interactions. These interactions lead to entropy-driven polyelectrolyte complexation for positively charged hen egg white lysozyme (HEWL) amyloids with negatively charged nanocellulose. The complexation increased the elasticity of the amyloid network by cross-linking individual fibrils. Scaling laws suggest different contributions to elasticity depending on nanocellulose morphology: cellulose nanocrystals induce amyloid bundling and network formation, while cellulose nanofibrils contribute to a second network. The contribution of the amyloids to the elasticity of the entire network structure is independent of nanocellulose morphology and agrees with theoretical scaling laws. Finally, strong and almost transparent hybrid amyloid-nanocellulose gels were prepared in a slow self-assembly started from repulsive co-dispersions above the isoelectric point of the amyloids, followed by dialysis to decrease the pH and induce amyloid-nanocellulose attraction and cross-linking. In summary, the gained knowledge on colloidal interactions provides an important basis for the design of functional biohybrid materials based on these two biopolymers.


Subject(s)
Amyloid , Amyloidogenic Proteins , Amyloid/chemistry , Cellulose
10.
ChemSusChem ; 16(8): e202201955, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-36650954

ABSTRACT

Nanocelluloses are anisotropic nanoparticles of semicrystalline assemblies of glucan polymers. They have great potential as renewable building blocks in the materials platform of a more sustainable society. As a result, the research on nanocellulose has grown exponentially over the last decades. To fully utilize the properties of nanocelluloses, a fundamental understanding of their colloidal behavior is necessary. As elongated particles with dimensions in a critical nanosize range, their colloidal properties are complex, with several behaviors not covered by classical theories. In this comprehensive Review, we describe the most prominent colloidal behaviors of nanocellulose by combining experimental data and theoretical descriptions. We discuss the preparation and characterization of nanocellulose dispersions, how they form networks at low concentrations, how classical theories cannot describe their behavior, and how they interact with other colloids. We then show examples of how scientists can use this fundamental knowledge to control the assembly of nanocellulose into new materials with exceptional properties. We hope aspiring and established researchers will use this Review as a guide.

11.
Appl Microbiol Biotechnol ; 107(4): 1465-1476, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36683057

ABSTRACT

Trichoderma spp. are ubiquitous soil-borne fungi that are widely used in biological control to promote and regulate healthy plant growth, as well as protect against plant pathogens. However, as with many biological materials, the relative instability of Trichoderma propagules limits its practical use in industrial applications. Therefore, there has been significant research interest in developing novel formulations with various carrier substances that are compatible with these fungal propagules and can enhance the shelf-life and overall efficacy of the Trichoderma. To this end, herein, we investigate the use of a variety of biopolymers and nanoparticles for the stabilization of Trichoderma atrobrunneum T720 conidia for biological control. The best-performing agents-agar and cellulose nanocrystals (CNC)-were then used in the preparation of oil-in-water emulsions to encapsulate conidia of T720. Emulsion properties including oil type, oil:water ratio, and biopolymer/particle concentration were investigated with respect to emulsion stability, droplet size, and viability of T720 conidia over time. Overall, agar-based formulations yielded highly stable emulsions with small droplet sizes, showing no evidence of drastic creaming, or phase separation after 1 month of storage. Moreover, agar-based formulations were able to maintain ~ 100% conidial viability of T720 after 3 months of storage, and over 70% viability after 6 months. We anticipate that the results demonstrated herein will lead to a new generation of significantly improved formulations for practical biological control applications. KEY POINTS: • Various biopolymers were evaluated for improving the stability of Trichoderma conidia • Oil in water emulsions was prepared using cellulose nanocrystals and agar as interface stabilizers • Agar-based emulsions showed ~ 100% viability for encapsulated conidia after 3 months of storage.


Subject(s)
Cellulose , Nanoparticles , Spores, Fungal , Emulsions/chemistry , Agar , Cellulose/chemistry , Water/chemistry , Nanoparticles/chemistry
12.
J Colloid Interface Sci ; 630(Pt A): 731-741, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36274408

ABSTRACT

The crystallization behavior of lipids is relevant in many fields such as adipose tissue formation and regeneration, forensic investigations and food production. Using a lipid model system composed of triacylglycerols, we study the formation of crystalline structures under laminar shear flows across various length scales by polarized light-, scanning electron-, and atomic force microscopy, as well as laser diffraction spectroscopy. The shear rate during crystallization γ̇cryst influences the acyl-chain length structure and promotes domain growth into the flow direction thereby transforming the crystallites from oblate into prolate particles. Concentration dependent aggregation of crystallites into clusters is the rate limiting step for floc and floc network formation. At high γ̇cryst, fast crystallite cluster formation at smaller equilibrium diameters is promoted. The high crystallite cluster concentration induces their aggregation into flocs which form weak networks. At low γ̇cryst, floc generation is limited by the low amount of crystallite clusters leading to slow growth of larger flocs and forming of strong networks. The findings in this work have potential implications ranging from the design of injectable soft tissue fillers for adipose tissue regeneration, to the crystalline network formation in microorganism derived lipids, up to a more energy-efficient production of chocolate confectionery.


Subject(s)
Crystallization , Microscopy, Atomic Force , Triglycerides/chemistry
13.
ACS Appl Mater Interfaces ; 15(1): 1958-1968, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36576901

ABSTRACT

Structural organization is ubiquitous throughout nature and contributes to the outstanding mechanical/adhesive performance of organisms including geckoes, barnacles, and crustaceans. Typically, these types of structures are composed of polysaccharide and protein-based building blocks, and therefore, there is significant research interest in using similar building blocks in the fabrication of high-performance synthetic materials. Via evaporation-induced self-assembly, the organization of cellulose nanocrystals (CNCs) into a chiral nematic regime results in the formation of structured CNC films with prominent mechanical, optical, and photonic properties. However, there remains an important knowledge gap in relating equilibrium suspension behavior to dry film structuring and other functional properties of CNC-based composite materials. Herein, we systematically investigate the phase behavior of composite suspensions of rigid CNCs and flexible bovine serum albumin (BSA) amyloids in relation to their self-assembly into ordered films and structural adhesives. Increasing the concentration of BSA amyloids in the CNC suspensions results in a clear decrease in the anisotropic fraction volume percent via the preferential accumulation of BSA amyloids in the isotropic regime (as a result of depletion interactions). This translates to a blue shift or compression of the chiral nematic pitch in dried films. Finally, we also demonstrate the synergistic adhesive potential of CNC-BSA amyloid composites, with ultimate lap shear strengths in excess of 500 N/mg. We anticipate that understanding the systematic relationships between material interactions and self-assembly in suspension such as those investigated here will pave the way for a new generation of structured composite materials with a variety of enhanced functionalities.


Subject(s)
Cellulose , Nanoparticles , Cellulose/chemistry , Serum Albumin, Bovine , Suspensions , Nanoparticles/chemistry , Anisotropy , Amyloidogenic Proteins
14.
Small ; 19(3): e2202470, 2023 01.
Article in English | MEDLINE | ID: mdl-36449596

ABSTRACT

The increasing demand for functional materials and an efficient use of sustainable resources makes the search for new material systems an ever growing endeavor. With this respect, architected (meta-)materials attract considerable interest. Their fabrication at the micro- and nanoscale, however, remains a challenge, especially for composites with highly different phases and unmodified reinforcement fillers. This study demonstrates that it is possible to create a non-cytotoxic nanocomposite ink reinforced by a sustainable phase, cellulose nanocrystals (CNCs), to print and tune complex 3D architectures using two-photon polymerization, thus, advancing the state of knowledge toward the microscale. Micro-compression, high-res scanning electron microscopy, (polarised) Raman spectroscopy, and composite modeling are used to study the structure-property relationships. A 100% stiffness increase is observed already at 4.5 wt% CNC while reaching a high photo-polymerization degree of ≈80% for both neat polymers and CNC-composites. Polarized Raman and the Halpin-Tsai composite-model suggest a random CNC orientation within the polymer matrix. The microscale approach can be used to tune arbitrary small scale CNC-reinforced polymer-composites with comparable feature sizes. The new insights pave the way for future applications where the 3D printing of small structures is essential to improve performances of tissue-scaffolds, extend bio-electronics applications or tailor microscale energy-absorption devices.


Subject(s)
Nanocomposites , Nanoparticles , Polymers/chemistry , Cellulose/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry , Printing, Three-Dimensional
15.
J Microbiol Methods ; 203: 106615, 2022 12.
Article in English | MEDLINE | ID: mdl-36356691

ABSTRACT

Newly enforced trade restrictions on seaweed, have resulted in short supply of technical agar with potential consequences for research, public health, and clinical labs. Here we show that microfibrillated cellulose (MFC), with and without an additional carbon source, can be used as an inexpensive growth media for cultivating and maintaining wood decay fungi.


Subject(s)
Cellulose , Wood , Culture Media , Fungi
16.
Front Robot AI ; 9: 1011793, 2022.
Article in English | MEDLINE | ID: mdl-36388255

ABSTRACT

Collecting temporal and spatial high-resolution environmental data can guide studies in environmental sciences to gain insights in ecological processes. The utilization of automated robotic systems to collect these types of data can maximize accuracy, resilience, and deployment rate. Furthermore, it reduces the risk to researchers deploying sensors in inaccessible environments and can significantly increase the cost-effectiveness of such studies. The introduction of transient robotic systems featuring embodied environmental sensors pushes towards building a digital ecology, while introducing only minimal disturbance to the environment. Transient robots made from fully biodegradable and non-fossil based materials, do not develop into hazardous e-waste at the end of their lifetime and can thus enable a broader adoption for environmental sensing in the real world. In this work, our approach towards the design of transient robots includes the integration of humidity-responsive materials in a glider, which is inspired by the Alsomitra macrocarpa seed. The design space of these gliders is explored and their behavior studied numerically, which allows us to make predictions on their flight characteristics. Results are validated against experiments, which show two different gliding behaviors, that can help improve the spread of the sensors. By tailoring the Cellulose-Gelatin composition of the humidity actuator, self-folding systems for selective rainwater exposure can be designed. The pH sensing layer, protected by the actuator, provides visual feedback on the pH of the rainwater. The presented methods can guide further concepts developing transient aerial robotic systems for sustainable, environmental monitoring.

17.
ACS Nano ; 16(11): 18210-18222, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36256903

ABSTRACT

Conventional manufacturing techniques allow the production of photoresponsive cellulose nanocrystals (CNC)-based composites that can reversibly modify their optical, mechanical, or chemical properties upon light irradiation. However, such materials are often limited to 2D films or simple shapes and do not benefit from spatial tailoring of mechanical properties resulting from CNC alignment. Herein, we propose the direct ink writing (DIW) of 3D complex structures that combine CNC reinforcement effects with photoinduced responses. After grafting azobenzene photochromes onto the CNC surfaces, up to 15 wt % of modified nanoparticles can be introduced into a polyurethane acrylate matrix. The influence of CNC on rheological properties allows DIW of self-standing 3D structures presenting local shear-induced alignment of the active reinforcements. The printed composites, with longitudinal elastic modulus of 30 MPa, react to visible-light irradiation with 30-50% reversible softening and present a shape memory behavior. The phototunable energy absorption of 3D complex structures is demonstrated by harnessing both geometrical and photoresponsive effects, enabling dynamic mechanical responses to environmental stimuli. Functionalized CNC in 3D printable inks have the potential to allow the rapid prototyping of several devices with tailored mechanical properties, suitable for applications requiring dynamic responses to environmental changes.

18.
Microbiol Spectr ; 10(5): e0304122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154147

ABSTRACT

Cocultivation of fungi and algae can result in a mutualistic or antagonistic interaction depending on the species involved and the cultivation conditions. In this study, we investigated the growth behavior and enzymatic activity of two filamentous white-rot fungi (Trametes versicolor and Trametes pubescens) and two freshwater algae (Chlorella vulgaris and Scenedesmus vacuolatus) cocultured in the presence of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical) oxidized cellulose nanofibrils (CNF) and cellulose nanocrystals (CNC). The growth of fungi and algae was studied in liquid, agar medium, and 3D-printed nanocellulose hydrogels. The results showed that cocultures grew faster under nutrient-rich conditions than in nutrient-depleted conditions. Key cellulose-degrading enzymes, including endoglucanase and laccase activities, were higher in liquid cocultures of T. versicolor and S. vacuolatus in the presence of cellulose compared to single cultures of fungi or algae. Although similar results were observed for cocultures of T. pubescens and C. vulgaris, laccase production diminished over time in these cultures. Fungi and algae were capable of growth in 3D-printed cellulose hydrogels. These results showed that cellulase enzyme production could be enhanced by cocultivating white-rot fungi with freshwater algae under nutrient-rich conditions with TEMPO-CNF and CNC. Additionally, the growth of white-rot fungi and freshwater algae in printed cellulose hydrogels demonstrates the potential use of fungi and algae in hydrogel systems for biotechnological applications, including biofuel production and bio-based fuel cell components. IMPORTANCE Depending on the conditions used to grow fungi and algae in the lab, they can interact in a mutually beneficial or negative way. These interactions could stimulate the organisms to produce enzymes in response to the interaction. We studied how wood decay fungi and freshwater algae grew in the presence and absence of cellulose, one of the basic building blocks of wood. How fungi and algae grew in 3D-printed cellulose hydrogels was also tested. Our results showed that fungi and algae partners produced significantly larger amounts of enzymes that degraded cellulose when grown with cellulose than when grown alone. In addition, fungi and algae were shown to grow in dense nanocellulose hydrogels and could survive the shear conditions during gel structuring while 3D-printing. These cultures could potentially be applied in the biotech industry for applications like energy production from cellulose, biofuel production, and bioremediation of cellulose material.


Subject(s)
Cellulase , Cellulose, Oxidized , Chlorella vulgaris , Microalgae , Laccase , Trametes , Coculture Techniques , Biofuels , Agar , Cellulose , Hydrogels/chemistry , Fungi
19.
Carbohydr Polym ; 296: 119934, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36087985

ABSTRACT

An enhanced efficiency fertilizer (EEF) is essential for sustainable agriculture, and here, we evaluated cellulose nanofibrils (CNF) as a nutrient carrier dispersed in biodegradable polymeric matrices. CNF were functionalized with negative (CNF-) and positive (CNF+) charges to improve (i) the CNF-nutrient and (ii) the CNF-polymeric matrix interactions. The CNF encapsulated the KNO3 nutrient by spray drying (microcapsules) and then inserted into a poly (hydroxybutyrate)/starch-based matrix by melt-compounding (tablets). These materials were morphologically, structurally, and thermally characterized before and after biodegradation. Nutrient release profiles showed the microcapsules released the nutrients for up to 1 h, while the tablets did for 8 h in water and over 80 days in soil. Tablets with CNF- released NO3- faster than K+, and those with CNF+ behaved inversely. Besides, the biodegradation efficiencies were up to 75 % in 120 days. The CNF charges affected nutrient release and the matrix biodegradation, ensuring the matrices were harmless to the environment.


Subject(s)
Cellulose , Nanofibers , Capsules , Fertilizers , Nutrients , Polymers
20.
Sci Rep ; 12(1): 11919, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35902666

ABSTRACT

We developed a disposable paper battery aiming to reduce the environmental impact of single-use electronics for applications such as point of care diagnosis, smart packaging and environmental sensing. The battery uses Zinc as a biodegradable metal anode, graphite as a nontoxic cathode material and paper as a biodegradable substrate. To facilitate additive manufacturing, we developed electrodes and current collector inks that can be stencil printed on paper to create water-activated batteries of arbitrary shape and size. The battery remains inactive until water is provided and absorbed by the paper substrate, taking advantage of its natural wicking behavior. Once activated, a single cell provides an open circuit potential of 1.2 V and a peak power density of 150 µW/cm2 at 0.5 mA. As a proof of concept, we fabricated a two cell battery and used it to power an alarm clock and its liquid crystal display.


Subject(s)
Graphite , Water , Electric Power Supplies , Electrodes , Graphite/chemistry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL