Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Vaccines (Basel) ; 12(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38675745

ABSTRACT

BACKGROUND: The COVID-19 pandemic has affected Madagascar, Cameroon, and the Central African Republic (CAR), with each experiencing multiple waves by mid-2022. This study aimed to evaluate immunity against SARS-CoV-2 strains Wuhan (W) and BA.2 (BA.2) among healthcare workers (HCWs) in these countries, focusing on vaccination and natural infection effects. METHODS: HCWs' serum samples were analyzed for neutralizing antibodies (nAbs) against W and BA.2 variants, with statistical analyses comparing responses between countries and vaccination statuses. RESULTS: Madagascar showed significantly higher nAb titers against both strains compared to CAR and Cameroon. Vaccination notably increased nAb levels against W by 2.6-fold in CAR and 1.8-fold in Madagascar, and against BA.2 by 1.6-fold in Madagascar and 1.5-fold in CAR. However, in Cameroon, there was no significant difference in nAb levels between vaccinated and unvaccinated groups. CONCLUSION: This study highlights the complex relationship between natural and vaccine-induced immunity, emphasizing the importance of assessing immunity in regions with varied epidemic experiences and low vaccination rates.

3.
BMC Complement Med Ther ; 23(1): 346, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37770899

ABSTRACT

BACKGROUND: Vitellaria paradoxa is used in traditional medicine for the treatment of various diseases in tropical countries; however, nothing is known about its anti-trypanosomal activity. Human African trypanosomiasis is a neglected tropical disease of Sub-Saharan Africa's poorest rural regions, and the efficacy of its treatment remains a challenge. This study investigates the as-yet-unknown trypanocidal activity of this plant. METHODS: V. paradoxa, commonly known as shea tree, was selected for study based on an ethnobotanical investigation. Ultrasonicated extracts from bark and seeds were successively treated with ethyl acetate and water. Column chromatography, NMR spectroscopy and mass spectrometry were used to identify isolated compounds. Purified trypanosomes (Trypanosoma brucei brucei) were incubated with serial dilutions of the extracts and isolated compounds at 37 °C in 5% CO2 for 24 h. Parasite viability was evaluated under a microscope. RESULTS: The ethyl acetate extracts of the bark showed the higher in vitro trypanocidal activity against T. brucei brucei with median inhibitory concentration (IC50) of 3.25 µg/mL. However, the triterpene 1α,2ß,3ß,19α-tretrahydroxyurs-12-en-28-oic acid and the pentadecanoic acid isolated from the ethyl acetate extract of the seeds showed in vitro trypanocidal activity with IC50 of 11.30 and 70.1 µM, respectively. CONCLUSION: The results obtained contribute to the validation of the traditional medicinal use of V. paradoxa. Our results encourage further investigations of this plant, mainly with respect to its in vivo efficacy and toxicity.


Subject(s)
Plants, Medicinal , Trypanocidal Agents , Trypanosoma brucei brucei , Humans , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology
4.
BMC Res Notes ; 16(1): 188, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37644583

ABSTRACT

OBJECTIVE: We optimized the spectrophotometric micromethod for the determination of arginase activity based on the Corraliza et al. modification of Schimke's method. Arginase activity in sera from patients suffering from human African trypanosomiasis, in macrophage lysates from trypanosome-infected mice, and in purified bovine liver arginase was compared using the conventional and optimized micromethods. RESULTS: The sensitivity of both micromethods was comparable. However, our optimized method has the following advantages: it uses small sample volumes (6 µl per assay vs. 50 µl) and reagent volumes (200 µl vs. 400 µl), it can be carried out in a single microplate well, thereby minimizing handling, and it requires fewer materials and utilizes readily available equipment. Our optimized method proved to be applicable and well suited for small-volume samples and resource-poor laboratories.


Subject(s)
Arginase , Biological Assay , Humans , Animals , Cattle , Mice , Laboratories , Macrophages , Spectrophotometry
5.
Trop Med Health ; 50(1): 70, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36131331

ABSTRACT

BACKGROUND: The national malaria control policy in the Central African Republic (CAR) promotes basic, clinical, and operational research on malaria in collaboration with national and international research institutions. Preparatory work for the elaboration of National Strategic Plans for the implementation of the national malaria control policy includes developing the research component, thus requiring an overview of national malaria research. Here, this survey aims to provide an inventory of malaria research as a baseline for guiding researchers and health authorities in choosing the future avenues of research. METHODS: Data sources and search strategy were defined to query the online Medline/PubMed database using the "medical subject headings" tool. Eligibility and study inclusion criteria were applied to the selected articles, which were classified based on year, research institute affiliations, and research topic. RESULTS: A total of 118 articles were retrieved and 51 articles were ultimately chosen for the bibliometric analysis. The number of publications on malaria has increased over time from 1987 to 2020. These articles were published in 32 different journals, the most represented being the Malaria Journal (13.73%) and the American Journal of Tropical Medicine and Hygiene (11.76%). The leading research topics were drug evaluation (52.94%), expatriate patients (23.54%), malaria in children (17.65%), morbidity (13.7%), and malaria during pregnancy (11.76%). The publications' authors were mainly affiliated with the Institut Pasteur of Bangui (41%), the French Military Medical Service (15.5%), and the University of Bangui (11.7%). Collaborations were mostly established with France, the UK, and the USA; some collaborations involved Switzerland, Austria, Pakistan, Japan, Sri Lanka, Benin, Cameroun, Ivory Coast, and Madagascar. The main sources of research funding were French agencies (28.6%) and international agencies (18.3%). Most studies included were not representative of the whole country. The CAR has the capacity to carry out research on malaria and to ensure the necessary collaborations. CONCLUSION: Malaria research activities in the CAR seem to reflect the priorities of national policy. One remaining challenge is to develop a more representative approach to better characterize malaria cases across the country. Finally, future research and control measures need to integrate the effect of COVID-19.

6.
Elife ; 102021 07 19.
Article in English | MEDLINE | ID: mdl-34279219

ABSTRACT

The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.


Subject(s)
Artemisinins/pharmacology , Drug Resistance/drug effects , Drug Resistance/genetics , Mutation , Plasmodium falciparum/drug effects , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Africa , Antimalarials/pharmacology , Asia , Cambodia , Humans , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Molecular Epidemiology
7.
Interdiscip Perspect Infect Dis ; 2020: 3938541, 2020.
Article in English | MEDLINE | ID: mdl-32802053

ABSTRACT

Malaria is a major public health issue in the Central African Republic (CAR) despite massive scale-up of malaria interventions. However, no information is available on the incidence of malaria in febrile illness cases or on the distribution of malaria infection according to demographic characteristics, which are important indicators and valuable epidemiological surveillance tools. This study therefore aimed to characterize malaria in the network of sentinel sites set up for influenza surveillance. A retrospective analysis was conducted to explore the data from these sentinel sites from 2015 to 2018. The Paracheck-Pf® rapid diagnosis test kit was used to screen for malaria in febrile illness cases. A total of 3609 malaria cases were identified in 5397 febrile patients, giving an incidence rate of 66.8%. The age group of 1-4 years was the most affected by malaria (76.0%). Moreover, prevalence varied across different sentinel sites, with the Bossembele Health Center, located in a rural area, showing an incidence of 96%, the Saint Joseph Health Center in a semiurban area of Bangui showing an incidence of 75%, and the Bangui Pediatric Complex in an urban site with an incidence of only 44.6%. Malaria transmission was holoendemic over the four-year study period, and malaria incidence decreased from 2016 to 2018. The incidence of malaria coinfection with influenza was 6.8%. This study demonstrated clear microspatial heterogeneity of malaria. Malaria was consistently the most frequent cause of febrile illness. Including sites in different climate zones in the CAR will allow for a more representative study.

8.
Malar J ; 19(1): 191, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448203

ABSTRACT

BACKGROUND: Over the last decade, artemisinin-based combination therapy (ACT) has contributed substantially to the decrease in malaria-related morbidity and mortality. The emergence of Plasmodium falciparum parasites resistant to artemisinin derivatives in Southeast Asia and the risk of their spread or of local emergence in sub-Saharan Africa are a major threat to public health. This study thus set out to estimate the proportion of P. falciparum isolates, with Pfkelch13 gene mutations associated with artemisinin resistance previously detected in Southeast Asia. METHODS: Blood samples were collected in two sites of Bangui, the capital of the Central African Republic (CAR) from 2017 to 2019. DNA was extracted and nested PCR were carried out to detect Plasmodium species and mutations in the propeller domain of the Pfkelch13 gene for P. falciparum samples. RESULTS: A total of 255 P. falciparum samples were analysed. Plasmodium ovale DNA was found in four samples (1.57%, 4/255). Among the 187 samples with interpretable Pfkelch13 sequences, four samples presented a mutation (2.1%, 4/187), including one non-synonymous mutation (Y653N) (0.5%, 1/187). This mutation has never been described as associated with artemisinin resistance in Southeast Asia and its in vitro phenotype is unknown. CONCLUSION: This preliminary study indicates the absence of Pfkelch13 mutant associated with artemisinin resistance in Bangui. However, this limited study needs to be extended by collecting samples across the whole country along with the evaluation of in vitro and in vivo phenotype profiles of Pfkelch13 mutant parasites to estimate the risk of artemisinin resistance in the CAR.


Subject(s)
Antimalarials/pharmacology , Artemisinins/pharmacology , Drug Resistance/genetics , Lactones/pharmacology , Mutation , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Central African Republic , Plasmodium falciparum/drug effects
9.
Parasite Immunol ; 41(8): e12632, 2019 08.
Article in English | MEDLINE | ID: mdl-31099071

ABSTRACT

Trypanosoma brucei gambiense, an extracellular eukaryotic flagellate parasite, is the main etiological agent of human African trypanosomiasis (HAT) or sleeping sickness. Dendritic cells (DCs) play a pivotal role at the interface between innate and adaptive immune response and are implicated during HAT. In this study, we investigated the effects of T gambiense and its excreted/secreted factors (ESF) on the phenotype of human monocyte-derived DCs (Mo-DCs). Mo-DCs were cultured with trypanosomes, lipopolysaccharide (LPS), ESF derived from T gambiense bloodstream strain Biyamina (MHOM/SD/82), or both ESF and LPS. Importantly, ESF reduced the expression of the maturation markers HLA-DR and CD83, as well as the secretion of IL-12, TNF-alpha and IL-10, in LPS-stimulated Mo-DCs. During mixed-leucocyte reactions, LPS- plus ESF-exposed DCs induced a non-significant decrease in the IFN-gamma/IL-10 ratio of CD4 + T-cell cytokines. Based on the results presented here, we raise the hypothesis that T gambiense has developed an immune escape strategy through the secretion of paracrine mediators in order to limit maturation and activation of human DCs. The identification of the factor(s) in the T gambiense ESF and of the DCs signalling pathway(s) involved may be important in the development of new therapeutic targets.


Subject(s)
Dendritic Cells/immunology , Monocytes/immunology , Protozoan Proteins/immunology , Trypanosoma brucei gambiense/immunology , Trypanosomiasis, African/immunology , Animals , Dendritic Cells/parasitology , Female , HLA-DR Antigens/genetics , HLA-DR Antigens/immunology , Host-Parasite Interactions , Humans , Interleukin-10/genetics , Interleukin-10/immunology , Interleukin-12/genetics , Interleukin-12/immunology , Lipopolysaccharides/immunology , Mice , Monocytes/parasitology , Protozoan Proteins/genetics , Signal Transduction , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Trypanosoma brucei gambiense/genetics , Trypanosomiasis, African/genetics , Trypanosomiasis, African/parasitology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
10.
J Vis Exp ; (146)2019 04 06.
Article in English | MEDLINE | ID: mdl-31009012

ABSTRACT

This method allows the separation of trypanosomes, parasites responsible for animal and human African trypanosomiasis (HAT), from infected blood. This is the best method for diagnosis of first stage HAT and furthermore this parasite purification method permits serological and research investigations. HAT is caused by Tsetse fly transmitted Trypanosoma brucei gambiense and T. b. rhodesiense. Related trypanosomes are the causative agents of animal trypanosomiasis. Trypanosome detection is essential for HAT diagnosis, treatment and follow-up. The technique described here is the most sensitive parasite detection technique, adapted to field conditions for the diagnosis of T. b. gambiense HAT and can be completed within one hour. Blood is layered onto an anion-exchanger column (DEAE cellulose) previously adjusted to pH 8, and elution buffer is added. Highly negatively charged blood cells are adsorbed onto the column whereas the less negatively charged trypanosomes pass through. Collected trypanosomes are pelleted by centrifugation and observed by microscopy. Moreover, parasites are prepared without cellular damage whilst maintaining their infectivity. Purified trypanosomes are required for immunological testing; they are used in the trypanolysis assay, the gold standard in HAT serology. Stained parasites are utilized in the card agglutination test (CATT) for field serology. Antigens from purified trypanosomes, such as variant surface glycoprotein, exoantigens, are also used in various immunoassays. The procedure described here is designed for African trypanosomes; consequently, chromatography conditions have to be adapted to each trypanosome strain, and more generally, to the blood of each species of host mammal. These fascinating pathogens are easily purified and available to use in biochemical, molecular and cell biology studies including co-culture with host cells to investigate host-parasite relationships at the level of membrane receptors, signaling, and gene expression; drug testing in vitro; investigation of gene deletion, mutation, or overexpression on metabolic processes, cytoskeletal biogenesis and parasite survival.


Subject(s)
DEAE-Cellulose/chemistry , Ion Exchange Resins/chemistry , Trypanosoma/isolation & purification , Animals , Anions , Arginase/metabolism , Blood/parasitology , Chromatography , Female , Glucose/metabolism , Macrophages/drug effects , Macrophages/enzymology , Mice , Pentamidine/pharmacology , Threonine/metabolism , Trypanosoma/drug effects , Trypanosoma brucei brucei/drug effects
11.
PLoS Negl Trop Dis ; 13(2): e0007051, 2019 02.
Article in English | MEDLINE | ID: mdl-30817751

ABSTRACT

Human African trypanosomiasis (HAT), or sleeping sickness, is a neglected tropical disease that is fatal if untreated, caused by Trypanosoma brucei gambiense and T. brucei rhodesiense. In its 2012 roadmap, WHO targeted HAT for elimination as a public health problem in 2020 and for zero transmission in 2030. Diagnosis of HAT is a multistep procedure comprising of clinical suspicion, confirmation, and stage determination. Suspects are identified on clinical signs and/or on screening for specific antibodies. Parasitological confirmation of suspects remains mandatory to avoid unnecessary toxic drug administration. The positive predictive value of the antibody detection tests is low. Simple parasite detection techniques, microscopic examination of lymph node aspirate, or stained thick blood films lack sensitivity, whereas in T. brucei gambiense patients, the number of blood trypanosomes may be very low. Parasite concentration techniques are therefore indispensable. Half a century ago, Sheila Lanham discovered a technique to separate trypanosomes from the blood of infected rodents, based on anion exchange chromatography with diethyl amino ethyl (DEAE) cellulose, a weak anion exchanger. Between pH 6-9, trypanosome surface is less negatively charged than that of blood cells. When blood is poured on top of a DEAE cellulose column, blood cells are retained, whereas parasites pass the column together with the elution buffer. The result is a pure suspension of trypanosomes that retain their morphology and infectivity. Because cell surface charges vary among trypanosome and mammal species, the optimal buffer pH and ionic strength conditions for different combinations of host and trypanosome species were established. Lanham's technique revolutionized the diagnosis of HAT. It is indispensable in the production of the Card Agglutination Test for Trypanosomiasis (CATT), the most used field test for screening in T. brucei gambiense HAT foci and essential to confirm the diagnosis in suspected people. Lumsden and colleagues developed the mini anion exchange centrifugation technique (mAECT). After adaptation for field conditions, its superior diagnostic and analytical sensitivity compared to another concentration technique was demonstrated. It was recommended as the most sensitive test for demonstrating trypanosomes in human blood. At the beginning of the 21st century, the mAECT was redesigned, allowing examination of a larger volume of blood, up to 0.35 ml with whole blood and up to 10 ml with buffy coat. The plastic collector tube in the new kit is also used for detection of trypanosomes in the cerebrospinal fluid. Unfortunately, mAECT also has some disadvantages, including its price, the need to centrifuge the collector tube, and the fact that it is manufactured on a noncommercial basis at only two research institutes. In conclusion, 50 years after Sheila Lanham's discovery, CATT and mAECT have become essential elements in the elimination of HAT.


Subject(s)
Anion Exchange Resins , Chromatography/history , Chromatography/methods , Trypanosoma brucei gambiense , Trypanosoma brucei rhodesiense , Trypanosomiasis, African/diagnosis , Animals , Antigens, Protozoan/chemistry , Chromatography/instrumentation , History, 20th Century , Humans , Trypanosomiasis, African/parasitology
12.
Front Immunol ; 9: 778, 2018.
Article in English | MEDLINE | ID: mdl-29731753

ABSTRACT

Mononuclear phagocytes (monocytes, dendritic cells, and macrophages) are among the first host cells to face intra- and extracellular protozoan parasites such as trypanosomatids, and significant expansion of macrophages has been observed in infected hosts. They play essential roles in the outcome of infections caused by trypanosomatids, as they can not only exert a powerful antimicrobial activity but also promote parasite proliferation. These varied functions, linked to their phenotypic and metabolic plasticity, are exerted via distinct activation states, in which l-arginine metabolism plays a pivotal role. Depending on the environmental factors and immune response elements, l-arginine metabolites contribute to parasite elimination, mainly through nitric oxide (NO) synthesis, or to parasite proliferation, through l-ornithine and polyamine production. To survive and adapt to their hosts, parasites such as trypanosomatids developed mechanisms of interaction to modulate macrophage activation in their favor, by manipulating several cellular metabolic pathways. Recent reports emphasize that some excreted-secreted (ES) molecules from parasites and sugar-binding host receptors play a major role in this dialog, particularly in the modulation of the macrophage's inducible l-arginine metabolism. Preventing l-arginine dysregulation by drugs or by immunization against trypanosomatid ES molecules or by blocking partner host molecules may control early infection and is a promising way to tackle neglected diseases including Chagas disease, leishmaniases, and African trypanosomiases. The present review summarizes recent knowledge on trypanosomatids and their ES factors with regard to their influence on macrophage activation pathways, mainly the NO synthase/arginase balance. The review ends with prospects for the use of biological knowledge to develop new strategies of interference in the infectious processes used by trypanosomatids, in particular for the development of vaccines or immunotherapeutic approaches.


Subject(s)
Arginine/metabolism , Host-Parasite Interactions/physiology , Macrophages/metabolism , Macrophages/parasitology , Protozoan Proteins/metabolism , Trypanosomiasis/metabolism , Animals , Humans
13.
J Immunol ; 199(5): 1762-1771, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28739879

ABSTRACT

Arginase activity induction in macrophages is an escape mechanism developed by parasites to cope with the host's immune defense and benefit from increased host-derived growth factor production. We report that arginase expression and activity were induced in macrophages during mouse infection by Trypanosoma musculi, a natural parasite of this host. This induction was reproduced in vitro by excreted/secreted factors of the parasite. A mAb directed to TbKHC1, an orphan kinesin H chain from Trypanosoma brucei, inhibited T. musculi excreted/secreted factor-mediated arginase induction. Anti-TbKHC1 Ab also inhibited T. musculi growth, both in vitro and in vivo. Induction of arginase activity and parasite growth involved C-type lectin receptors, because mannose injection decreased arginase activity induction and parasite load in vitro and in vivo. Accordingly, the parasite load was reduced in mice lacking mannose receptor C-type 1. The T. musculi KHC1 homolog showed high similarity with TbKHC1. Bioinformatics analysis revealed the presence of homologs of this gene in other trypanosomes, including pathogens for humans and animals. Host metabolism dysregulation represents an effective parasite mechanism to hamper the host immune response and modify host molecule production to favor parasite invasion and growth. Thus, this orphan kinesin plays an important role in promoting trypanosome infection, and its neutralization or the lock of its partner host molecules offers promising approaches to increasing resistance to infection and new developments in vaccination against trypanosomiasis.


Subject(s)
Antigens, Protozoan/metabolism , Arginase/metabolism , Cell Adhesion Molecules/metabolism , Lectins, C-Type/metabolism , Macrophages/immunology , Receptors, Cell Surface/metabolism , Trypanosoma/physiology , Trypanosomiasis/immunology , Animals , Antibodies/metabolism , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Cell Adhesion Molecules/genetics , Cells, Cultured , Female , Kinesins/genetics , Lectins, C-Type/genetics , Macrophages/parasitology , Mannose Receptor , Mannose-Binding Lectins/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Parasite Load , Phylogeny , Receptors, Cell Surface/genetics , Vaccination
14.
Parasite ; 20: 39, 2013.
Article in English | MEDLINE | ID: mdl-24139487

ABSTRACT

Trypanosomes from animals are potential pathogens for humans. Several human cases infected by Trypanosoma lewisi, a parasite of rats, have been reported. The number of these infections is possibly underestimated. Some infections were self-cured, others required treatment with drugs used in human African trypanosomosis. An in vitro evaluation of these drugs and fexinidazole, a new oral drug candidate, has been performed against T. lewisi in comparison with T. brucei gambiense. All have comparable activities against the two parasites. Suramin was not effective. In vivo, drugs were tested in rats immunosuppressed by cyclophosphamide. The best efficacy was obtained for fexinidazole, and pentamidine (15 mg/kg): rats were cured in 7 and 10 days respectively. Rats receiving nifurtimox-eflornithine combination therapy (NECT) or pentamidine (4 mg/kg) were cured after 28 days, while melarsoprol was weakly active. The identification of efficient drugs with reduced toxicity will help in the management of new cases of atypical trypanosomosis.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma lewisi/drug effects , Trypanosomiasis/drug therapy , Animals , Eflornithine/pharmacology , Eflornithine/therapeutic use , Female , Humans , Immunocompromised Host , Inhibitory Concentration 50 , Melarsoprol/pharmacology , Melarsoprol/therapeutic use , Mice , Nifurtimox/pharmacology , Nifurtimox/therapeutic use , Nitroimidazoles/pharmacology , Nitroimidazoles/therapeutic use , Parasitemia/drug therapy , Pentamidine/pharmacology , Pentamidine/therapeutic use , Rats , Rats, Wistar , Suramin/pharmacology
15.
J Clin Microbiol ; 51(7): 2379-81, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23554207

ABSTRACT

Arginase serum levels were increased in human African trypanosomiasis patients and returned to control values after treatment. Arginase hydrolyzes l-arginine to l-ornithine, which is essential for parasite growth. Moreover, l-arginine depletion impairs immune functions. Arginase may be considered as a biomarker for treatment efficacy.


Subject(s)
Arginase/blood , Biomarkers/blood , Drug Monitoring/methods , Trypanosomiasis, African/drug therapy , Female , Humans , Male , Serum/chemistry , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...