Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 14(7): 986-992, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465306

ABSTRACT

Modification of potent, selective metabotropic glutamate receptor 2 negative allosteric modulator (mGluR2 NAM) led to a series of analogues with excellent binding affinity, lipophilicity, and suitable physicochemical properties for a PET tracer with convenient chemical handles for incorporation of a 11C or 18F radiolabel. [11C]MK-8056 was synthesized and evaluated in vivo and demonstrated appropriate affinity, selectivity, and physicochemical properties to be used as a positron emission tomography tracer for mGluR2.

2.
Nat Commun ; 12(1): 815, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33547286

ABSTRACT

Narcolepsy type 1 (NT1) is a chronic neurological disorder that impairs the brain's ability to control sleep-wake cycles. Current therapies are limited to the management of symptoms with modest effectiveness and substantial adverse effects. Agonists of the orexin receptor 2 (OX2R) have shown promise as novel therapeutics that directly target the pathophysiology of the disease. However, identification of drug-like OX2R agonists has proven difficult. Here we report cryo-electron microscopy structures of active-state OX2R bound to an endogenous peptide agonist and a small-molecule agonist. The extended carboxy-terminal segment of the peptide reaches into the core of OX2R to stabilize an active conformation, while the small-molecule agonist binds deep inside the orthosteric pocket, making similar key interactions. Comparison with antagonist-bound OX2R suggests a molecular mechanism that rationalizes both receptor activation and inhibition. Our results enable structure-based discovery of therapeutic orexin agonists for the treatment of NT1 and other hypersomnia disorders.


Subject(s)
Aminopyridines/chemistry , Azepines/chemistry , Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Peptides/chemistry , Sleep Aids, Pharmaceutical/chemistry , Sulfonamides/chemistry , Triazoles/chemistry , Aminopyridines/metabolism , Azepines/metabolism , Binding Sites , Cloning, Molecular , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HEK293 Cells , Humans , Molecular Dynamics Simulation , Orexin Receptor Antagonists/metabolism , Orexin Receptors/agonists , Orexin Receptors/metabolism , Peptides/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sleep Aids, Pharmaceutical/metabolism , Sulfonamides/metabolism , Triazoles/metabolism
3.
Bioorg Med Chem Lett ; 30(9): 127066, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32173198

ABSTRACT

Antagonism of the mGluR2 receptor has the potential to provide therapeutic benefit to cognitive disorders by elevating synaptic glutamate, the primary excitatory neurotransmitter in the brain. Selective antagonism of the mGluR2 receptor, however, has so far been elusive, given the very high homology of this receptor with mGluR3, particularly at the orthosteric binding site. Given that inhibition of mGluR3 has been implicated in undesired effects, we sought to identify selective mGluR2 negative allosteric modulators. Herein we describe the discovery of the highly potent and selective class of mGluR2 negative allosteric modulators, 4-arylquinoline-2-carboxamides, following a successful HTS campaign and medicinal chemistry optimization, showing potent in vivo efficacy in rodent.


Subject(s)
Drug Discovery , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Adjuvants, Anesthesia/toxicity , Amino Acids/pharmacology , Amphetamines/pharmacology , Animals , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Glutamic Acid/metabolism , High-Throughput Screening Assays , Mice , Molecular Structure , Scopolamine/toxicity , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 27(6): 1364-1370, 2017 03 15.
Article in English | MEDLINE | ID: mdl-28216403

ABSTRACT

In an ongoing effort to explore the use of orexin receptor antagonists for the treatment of insomnia, dual orexin receptor antagonists (DORAs) were structurally modified, resulting in compounds selective for the OX2R subtype and culminating in the discovery of 23, a highly potent, OX2R-selective molecule that exhibited a promising in vivo profile. Further structural modification led to an unexpected restoration of OX1R antagonism. Herein, these changes are discussed and a rationale for selectivity based on computational modeling is proposed.


Subject(s)
Orexin Receptor Antagonists/pharmacology , Orexins/antagonists & inhibitors , Animals , Electroencephalography , Electromyography , Molecular Structure , Orexin Receptor Antagonists/chemistry , Rats
5.
ACS Med Chem Lett ; 7(3): 312-7, 2016 Mar 10.
Article in English | MEDLINE | ID: mdl-26985321

ABSTRACT

Investigation of a novel amino-aza-benzimidazolone structural class of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 2 (mGluR2) identified [2.2.2]-bicyclic amine 12 as an intriguing lead structure due to its promising physicochemical properties and lipophilic ligand efficiency (LLE). Further optimization led to chiral amide 18, which exhibited strong in vitro activity and attractive pharmacokinetic (PK) properties. Hypothesis-driven target design identified compound 21 as a potent, highly selective, orally bioavailable mGluR2 PAM, which addressed a CYP time-dependent inhibition (TDI) liability of 18, while maintaining excellent drug-like properties with robust in vivo activity in a clinically validated model of antipsychotic potential.

6.
Bioorg Med Chem Lett ; 26(4): 1260-4, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26810316

ABSTRACT

Optimization of a benzimidazolone template for potency and physical properties revealed 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as a key template on which to develop a new series of mGlu2 positive allosteric modulators (PAMs). Systematic investigation of aryl-SAR led to the identification of compound 27 as a potent and highly selective mGlu2 PAM with sufficient pharmacokinetics to advance to preclinical models of psychosis. Gratifyingly, compound 27 showed full efficacy in the PCP- and MK-801-induced hyperlocomotion assay in rats at CSF concentrations consistent with mGlu2 PAM potency.


Subject(s)
Imidazoles/chemistry , Pyridines/chemistry , Pyridones/chemistry , Receptors, Metabotropic Glutamate/chemistry , Allosteric Regulation , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Imidazoles/blood , Imidazoles/pharmacology , Imidazoles/therapeutic use , Locomotion/drug effects , Protein Binding , Psychotic Disorders/drug therapy , Psychotic Disorders/pathology , Pyridines/pharmacology , Pyridines/therapeutic use , Pyridones/blood , Pyridones/pharmacology , Rats , Receptors, Metabotropic Glutamate/metabolism , Structure-Activity Relationship
7.
Ann Surg Oncol ; 22(10): 3389-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26265365

ABSTRACT

BACKGROUND: Bilateral breast cancer (BBC) may present as synchronous (SBC) or metachronous breast cancer (MBC). Optimal surgical management of BBC patients is not well-defined. In this study, we report on histopathology, treatment, and outcomes in BBC patients. METHODS: Upon Institutional Review Board approval, we identified BBC patients diagnosed and treated for invasive breast cancer between 1999 and 2007. Retrospective chart review for demographics, histopathology, treatment, and outcomes was performed, and factors associated with BCS choice were collected. Contraindication to BCS was defined as any of the following one-breast findings: multicentric disease, tumor considered too large for BCS, and a patient without a nominal breast size for acceptable cosmetic results. McNemar's test for matched pairs (binary variables) or the paired t test (continuous variables) were used to examine if a pathologic characteristic differed within a cancer pair. Kaplan-Meier methods estimated overall survival (OS). RESULTS: A total of 203 BBC patients (119 SBC, 84 MBC) comprised our study group. Histopathologic characteristics of the first and second cancers diagnosed in both the SBC and MBC patients were very similar in histologic type and molecular profiles. Overall, 57% of MBC patients underwent breast-conserving surgery (BCS) at initial diagnosis versus 34% of patients with SBC. BCS contraindications were similar in both groups: 16 (34%) MBC patients and 28 (36%) SBC patients. Kaplan-Meier OS estimates at 5 and 10 years were 86 and 78% for MBC, and 87 and 77% for SBC patients, respectively. CONCLUSIONS: OS was excellent for both the MBC and SBC groups. Contraindications to BCS did not differ between groups. However, patients with SBC were less likely to undergo BCS compared with patients with MBC at the time of initial diagnosis.


Subject(s)
Breast Neoplasms/surgery , Carcinoma, Ductal, Breast/surgery , Carcinoma, Lobular/surgery , Mastectomy, Segmental , Neoplasm Recurrence, Local/surgery , Adult , Aged , Aged, 80 and over , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/mortality , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/mortality , Carcinoma, Lobular/pathology , Female , Follow-Up Studies , Humans , Middle Aged , Neoplasm Invasiveness , Neoplasm Recurrence, Local/mortality , Neoplasm Recurrence, Local/pathology , Neoplasm Staging , Prognosis , Prospective Studies , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Retrospective Studies , Survival Rate
8.
Bioorg Med Chem Lett ; 25(12): 2488-92, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25981685

ABSTRACT

Antagonism of orexin receptors has shown clinical efficacy as a novel paradigm for the treatment of insomnia and related disorders. Herein, molecules related to the dual orexin receptor antagonist filorexant were transformed into compounds that were selective for the OX2R subtype. Judicious selection of the substituents on the pyridine ring and benzamide groups led to 6b; which was highly potent, OX2R selective, and exhibited excellent development properties.


Subject(s)
Orexin Receptor Antagonists/chemistry , Orexin Receptors/chemistry , Piperidines/chemistry , Triazoles/chemistry , Animals , Dogs , Half-Life , Mice , Orexin Receptor Antagonists/pharmacokinetics , Orexin Receptor Antagonists/therapeutic use , Orexin Receptors/metabolism , Piperidines/pharmacokinetics , Piperidines/therapeutic use , Protein Binding , Pyrimidines/chemistry , Rats , Sleep Initiation and Maintenance Disorders/drug therapy , Sleep Initiation and Maintenance Disorders/veterinary , Structure-Activity Relationship , Triazoles/pharmacokinetics , Triazoles/therapeutic use
10.
Neuropharmacology ; 82: 161-73, 2014 Jul.
Article in English | MEDLINE | ID: mdl-23291536

ABSTRACT

Previous work has suggested that activation of mGlu5 receptor augments NMDA receptor function and thereby may constitute a rational approach addressing glutamate hypofunction in schizophrenia and a target for novel antipsychotic drug development. Here, we report the in vitro activity, in vivo efficacy and safety profile of 5PAM523 (4-Fluorophenyl){(2R,5S)-5-[5-(5-fluoropyridin-2-yl)-1,2,4-oxadiazol-3-yl]-2-methylpiperidin-1-yl}methanone), a structurally novel positive allosteric modulator selective of mGlu5. In cells expressing human mGlu5 receptor, 5PAM523 potentiated threshold responses to glutamate in fluorometric calcium assays, but does not have any intrinsic agonist activity. 5PAM523 acts as an allosteric modulator as suggested by the binding studies showing that 5PAM523 did not displace the binding of the orthosteric ligand quisqualic acid, but did partially compete with the negative allosteric modulator, MPyEP. In vivo, 5PAM523 reversed amphetamine-induced locomotor activity in rats. Therefore, both the in vitro and in vivo data demonstrate that 5PAM523 acts as a selective mGlu5 PAM and exhibits anti-psychotic like activity. To study the potential for adverse effects and particularly neurotoxicity, brain histopathological exams were performed in rats treated for 4 days with 5PAM523 or vehicle. The brain exam revealed moderate to severe neuronal necrosis in the rats treated with the doses of 30 and 50 mg/kg, particularly in the auditory cortex and hippocampus. To investigate whether this neurotoxicity is mechanism specific to 5PAM523, similar safety studies were carried out with three other structurally distinct selective mGlu5 PAMs. Results revealed a comparable pattern of neuronal cell death. Finally, 5PAM523 was tested in mGlu5 knock-out (KO) and wild type (WT) mice. mGlu5 WT mice treated with 5PAM523 for 4 days at 100 mg/kg presented significant neuronal death in the auditory cortex and hippocampus. Conversely, mGlu5 KO mice did not show any neuronal loss by histopathology, suggesting that enhancement of mGlu5 function is responsible for the toxicity of 5PAM523. This study reveals for the first time that augmentation of mGlu5 function with selective allosteric modulators results in neurotoxicity.


Subject(s)
Antipsychotic Agents/toxicity , Benzamides/toxicity , Brain/drug effects , Cell Death/drug effects , Excitatory Amino Acid Agents/toxicity , Oxadiazoles/toxicity , Receptor, Metabotropic Glutamate 5/metabolism , Allosteric Regulation , Animals , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacokinetics , Benzamides/chemistry , Benzamides/pharmacokinetics , Brain/pathology , Brain/physiopathology , CHO Cells , Cell Death/physiology , Cells, Cultured , Cricetulus , Excitatory Amino Acid Agents/chemistry , Excitatory Amino Acid Agents/pharmacokinetics , Female , Humans , Male , Mice, 129 Strain , Mice, Knockout , Necrosis/pathology , Necrosis/physiopathology , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Neurotoxicity Syndromes/pathology , Neurotoxicity Syndromes/physiopathology , Oxadiazoles/chemistry , Oxadiazoles/pharmacokinetics , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Metabotropic Glutamate 5/genetics
11.
Neuropharmacology ; 62(3): 1453-60, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21112344

ABSTRACT

The glutamatergic hypofunction hypothesis of schizophrenia has led to the development of novel therapeutic strategies modulating NMDA receptor function. One of these strategies targets the activation of the metabotropic glutamate receptor 5 (mGlu5 receptor) using positive allosteric modulators (PAMs). Our goal was to evaluate the potential for repeated administration of the mGlu5 receptor PAM, CDPPB (3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide) (30 mg/kg) to induce tolerance to the anti-psychotic like effect using the amphetamine-induced hyperlocomotion rat model, and to produce receptor desensitization in mGlu5 receptor-enriched brain regions. CDPPB dose dependently reduced the locomotor response to amphetamine when administered acutely, and the same effect was observed following 7-day pre-treatment regime. In addition, 7-day dosing of CDPPB did not affect mGlu5 receptor density in the striatum, nor did it change mGlu5 receptor PAM-induced phosphorylation of NMDA, GluN1 and GluN2b, receptor subunits in striatum compared to the levels measured acutely. In contrast, in the frontal cortex, repeated administration of CDPPB decreased mGlu5 receptor density and resulted in a loss of its ability to increase GluN1 and GluN2b levels. Consistent with a reduction of cortical mGlu5 receptor density and phosphorylation, CDPPB (30 mg/kg) significantly affected sleep architecture as determined by cortical EEG at day one however by the seventh day of dosing all sleep changes were absent. Together these results suggest that the development of tolerance induced by the repeated treatment with the mGlu5 receptor PAM, CDPPB, may depend not only on the system being measured (sleep architecture vs psychostimulant induced hyperactivity), but also on the brain region involved with frontal cortex being a more susceptible region to receptor desensitization and internalization than striatum.


Subject(s)
Benzamides/administration & dosage , Cerebral Cortex/physiology , Corpus Striatum/physiology , Pyrazoles/administration & dosage , Receptors, Metabotropic Glutamate/physiology , Allosteric Regulation/drug effects , Animals , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Male , Psychomotor Agitation/physiopathology , Rats , Rats, Sprague-Dawley , Rats, Wistar , Receptor, Metabotropic Glutamate 5 , Sleep/drug effects
12.
Mol Pharmacol ; 78(4): 648-57, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660086

ABSTRACT

Activation of M1 muscarinic receptors occurs through orthosteric and allosteric binding sites. To identify critical residues, site-directed mutagenesis and chimeric receptors were evaluated in functional calcium mobilization assays to compare orthosteric agonists, acetylcholine and xanomeline, M1 allosteric agonists AC-42 (4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine hydrogen chloride), TBPB (1-[1'-(2-methylbenzyl)-1,4'-bipiperidin-4-yl]-1,3-dihydro-2H-benzimidazol-2-one), and the clozapine metabolite N-desmethylclozapine. A minimal epitope has been defined for AC-42 that comprises the first 45 amino acids, the third extracellular loop, and seventh transmembrane domain (Mol Pharmacol 61:1297-1302, 2002). Using chimeric M1 and M3 receptor constructs, the AC-42 minimal epitope has been extended to also include transmembrane II. Phe77 was identified as a critical residue for maintenance of AC-42 and TBPB agonist activity. In contrast, the functional activity of N-desmethylclozapine did not require Phe77. To further map the binding site of AC-42, TBPB, and N-desmethylclozapine, point mutations previously reported to affect activities of M1 orthosteric agonists and antagonists were studied. Docking into an M1 receptor homology model revealed that AC-42 and TBPB share a similar binding pocket adjacent to the orthosteric binding site at the opposite face of Trp101. In contrast, the activity of N-desmethylclozapine was generally unaffected by the point mutations studied, and the docking indicated that N-desmethylclozapine bound to a site distinct from AC-42 and TBPB overlapping with the orthosteric site. These results suggest that structurally diverse allosteric agonists AC-42, TBPB, and N-desmethylclozapine may interact with different subsets of residues, supporting the hypothesis that M1 receptor activation can occur through at least three different binding domains.


Subject(s)
Acetylcholine/metabolism , Benzimidazoles/metabolism , Piperidines/metabolism , Receptor, Muscarinic M1/agonists , Receptor, Muscarinic M1/metabolism , Allosteric Regulation/physiology , Allosteric Site/physiology , Amino Acid Sequence , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Binding Sites/physiology , Humans , Molecular Sequence Data , Piperidines/chemistry , Piperidines/pharmacology , Protein Structure, Secondary
13.
Bioorg Med Chem Lett ; 20(10): 3129-33, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20409708

ABSTRACT

Hit to lead optimization of (5R)-5-hexyl-3-phenyl-1,3-oxazolidin-2-one as a positive allosteric modulator of mGluR2 is described. Improvements in potency and metabolic stability were achieved through SAR on both ends of the oxazolidinone. An optimized lead compound was found to be brain penetrant and active in a rat ketamine-induced hyperlocomotion model for antipsychotic activity.


Subject(s)
Oxazolidinones/chemistry , Receptors, Metabotropic Glutamate/metabolism , Schizophrenia/drug therapy , Allosteric Regulation , Animals , Antipsychotic Agents , Ketamine/toxicity , Oxazolidinones/chemical synthesis , Oxazolidinones/pharmacology , Rats , Receptors, Metabotropic Glutamate/agonists , Structure-Activity Relationship
14.
ACS Med Chem Lett ; 1(8): 406-10, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-24900224

ABSTRACT

Novel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.

15.
Bioorg Med Chem Lett ; 19(5): 1488-91, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19179073

ABSTRACT

Employing an iterative analogue library approach, novel potent and selective glycine transporter 1 (GlyT1) inhibitors containing a 4-pyridin-2-ylpiperidine sulfonamide have been discovered. These inhibitors are devoid of time-dependent CYP inhibition activity and exhibit improved aqueous solubility versus the corresponding 4-phenylpiperidine analogues.


Subject(s)
Benzamides/chemical synthesis , Drug Discovery/methods , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Piperidines/chemical synthesis , Sulfonamides/chemical synthesis , Benzamides/pharmacology , Glycine Plasma Membrane Transport Proteins/metabolism , Humans , Piperidines/pharmacology , Solubility , Sulfonamides/pharmacology
16.
Nucl Med Biol ; 35(3): 315-25, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18355687

ABSTRACT

INTRODUCTION: In an effort to develop agents to test the NMDA hypofunction hypothesis of schizophrenia, benchmark compounds from a program to discover potent, selective, competitive glycine transporter 1 (GlyT1) inhibitors were radiolabeled in order to further study the detailed pharmacology of these inhibitors and the distribution of GlyT1 in brain. We here report the in vitro characterization of [35S](S)-2-amino-4-chloro-N-(1-(4-phenyl-1-(propylsulfonyl)piperidin-4-yl)ethyl)benzamide ([35S]ACPPB), a radiotracer developed from a potent and selective non-sarcosine-derived GlyT1 inhibitor, its use in autoradiographic studies to localize (S)-2-amino-6-chloro-N-(1-(4-phenyl-1-(propylsulfonyl)piperidin-4-yl)ethyl)benzamide (ACPPB) binding sites in rat and rhesus brain and for in vivo occupancy assays of competitive GlyT1 inhibitors. METHODS: Functional potencies of unlabeled compounds were characterized by [14C]glycine uptake into JAR (human placental choriocarcinoma) cells and synaptosomes. Radioligand binding studies were performed with tissue homogenates. Autoradiographic studies were performed on tissue slices. RESULTS: ACPPB is a potent (Kd=1.9 nM), selective, GlyT1 inhibitor that, when radiolabeled with [35S], is a well-behaved radioligand with low nondisplaceable binding. Autoradiographic studies of rat and rhesus brain slices with this ligand showed that specific binding sites were plentiful and nonhomogeneously distributed, with high levels of binding in the brainstem, cerebellar white matter, thalamus, cortical white matter and spinal cord gray matter. In vivo studies demonstrate displaceable binding of [35S]ACPPB in rat brain tissues following iv administration of this radioligand. CONCLUSIONS: This is the first report of detailed anatomical localization of GlyT1 using direct radioligand binding, and the first demonstration that an in vivo occupancy assay is feasible, suggesting that it may also be feasible to develop positron emission tomography tracers for GlyT1.


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacokinetics , Brain/diagnostic imaging , Glycine Plasma Membrane Transport Proteins/antagonists & inhibitors , Glycine Plasma Membrane Transport Proteins/metabolism , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/pharmacokinetics , Sulfonamides/chemical synthesis , Sulfonamides/pharmacokinetics , Animals , Autoradiography , Benzamides/chemistry , Binding, Competitive , Carbon Radioisotopes/pharmacokinetics , Cell Line, Tumor , Choriocarcinoma/diagnostic imaging , Female , Glycine/pharmacokinetics , Humans , Macaca mulatta , Pregnancy , Radioligand Assay , Radionuclide Imaging , Radiopharmaceuticals/chemistry , Rats , Rats, Sprague-Dawley , Sulfonamides/chemistry , Sulfur Radioisotopes/pharmacokinetics , Synaptosomes/diagnostic imaging , Tissue Distribution
17.
Bioorg Med Chem Lett ; 17(5): 1386-91, 2007 Mar 01.
Article in English | MEDLINE | ID: mdl-17210250

ABSTRACT

This Letter describes, for the first time, the synthesis and SAR, developed through an iterative analog library approach, that led to the discovery of the positive allosteric modulator (PAM) of the metabotropic glutamate receptor mGluR5 CPPHA. Binding to a unique allosteric binding site distinct from other mGluR5 PAMs, CPPHA has been the focus of numerous pharmacology studies by several laboratories.


Subject(s)
Allosteric Regulation , Benzamides/chemistry , Benzamides/pharmacology , Phthalimides/chemistry , Phthalimides/pharmacology , Receptors, Metabotropic Glutamate/drug effects , Allosteric Site , Animals , Humans , Rats , Receptor, Metabotropic Glutamate 5 , Structure-Activity Relationship
19.
J Pharmacol Exp Ther ; 313(1): 199-206, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15608073

ABSTRACT

We found that 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB) is a potent and selective positive allosteric modulator of the metabotropic glutamate receptor subtype 5 (mGluR5). In Chinese hamster ovary cells expressing human mGluR5, CDPPB potentiated threshold responses to glutamate in fluorometric Ca2+ assays more than 7-fold with an EC50 value of approximately 27 nM. At 1 microM, CDPPB shifted mGluR5 agonist concentration response curves to glutamate, quisqualate, and (R,S)-3,5-dihydroxyphenylglycine 3- to 9-fold to the left. At higher concentrations, CDPPB exhibited agonist-like activity on cells expressing mGluR5. No other activity was observed on any other mGluR or cell type at concentrations up to 10 microM. CDPPB had no effect on [3H]quisqualate binding to mGluR5 but did compete for binding of [3H]methoxyPEPy, an analog of the selective mGluR5 negative allosteric modulator MPEP. CDPPB was found to be brain penetrant and reversed amphetamine-induced locomotor activity and amphetamine-induced deficits in prepulse inhibition in rats, two models sensitive to antipsychotic drug treatment. These results demonstrate that positive allosteric modulation of mGluR5 produces behavioral effects, suggesting that such modulation serves as a viable approach to increasing mGluR5 activity in vivo. These effects are consistent with the hypothesis that allosteric potentiation of mGluR5 may provide a novel approach for development of antipsychotic agents.


Subject(s)
Antipsychotic Agents/pharmacology , Behavior, Animal/drug effects , Benzamides/pharmacology , Phthalimides/pharmacology , Receptors, Metabotropic Glutamate/drug effects , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Amino Acids/pharmacology , Amphetamine/antagonists & inhibitors , Amphetamine/pharmacology , Animals , Antipsychotic Agents/pharmacokinetics , Benzamides/pharmacokinetics , CHO Cells , Cell Line , Central Nervous System Stimulants/antagonists & inhibitors , Central Nervous System Stimulants/pharmacology , Cricetinae , Dogs , Excitatory Amino Acid Antagonists/pharmacology , Female , Haplorhini , Humans , Image Interpretation, Computer-Assisted , In Vitro Techniques , Microsomes, Liver/metabolism , Models, Statistical , Motor Activity/drug effects , Phthalimides/pharmacokinetics , Radioligand Assay , Rats , Rats, Sprague-Dawley , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Reflex, Startle/drug effects , Xanthenes/pharmacology
20.
J Med Chem ; 47(24): 5825-8, 2004 Nov 18.
Article in English | MEDLINE | ID: mdl-15537338

ABSTRACT

This report describes the discovery of the first centrally active allosteric modulators of the metabotropic glutamate receptor subtype 5 (mGluR5). Appropriately substituted N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamides (e.g., 8) have been identified as a novel class of potent positive allosteric modulators of mGluR5 that potentiate the response to glutamate. An iterative analogue library synthesis approach provided potentiators with excellent potency and selectivity for mGluR5 (vs mGluRs 1-4, 7, 8). Compound 8q demonstrated in vivo proof of concept in an animal behavior model where known antipsychotics are active, supporting the development of new antipsychotics based on the NMDA hypofunction model for schizophrenia.


Subject(s)
Benzamides/chemical synthesis , Pyrazoles/chemical synthesis , Receptors, Metabotropic Glutamate/drug effects , Allosteric Regulation , Animals , Antipsychotic Agents/chemical synthesis , Antipsychotic Agents/chemistry , Antipsychotic Agents/pharmacology , Benzamides/chemistry , Benzamides/pharmacology , Brain/metabolism , CHO Cells , Cricetinae , Cricetulus , Glutamic Acid/pharmacology , Humans , In Vitro Techniques , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Receptor, Metabotropic Glutamate 5 , Receptors, Metabotropic Glutamate/physiology , Reflex, Startle/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...