Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
JMIR Med Inform ; 12: e50117, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38771237

ABSTRACT

Background: With the increasing availability of data, computing resources, and easier-to-use software libraries, machine learning (ML) is increasingly used in disease detection and prediction, including for Parkinson disease (PD). Despite the large number of studies published every year, very few ML systems have been adopted for real-world use. In particular, a lack of external validity may result in poor performance of these systems in clinical practice. Additional methodological issues in ML design and reporting can also hinder clinical adoption, even for applications that would benefit from such data-driven systems. Objective: To sample the current ML practices in PD applications, we conducted a systematic review of studies published in 2020 and 2021 that used ML models to diagnose PD or track PD progression. Methods: We conducted a systematic literature review in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines in PubMed between January 2020 and April 2021, using the following exact string: "Parkinson's" AND ("ML" OR "prediction" OR "classification" OR "detection" or "artificial intelligence" OR "AI"). The search resulted in 1085 publications. After a search query and review, we found 113 publications that used ML for the classification or regression-based prediction of PD or PD-related symptoms. Results: Only 65.5% (74/113) of studies used a holdout test set to avoid potentially inflated accuracies, and approximately half (25/46, 54%) of the studies without a holdout test set did not state this as a potential concern. Surprisingly, 38.9% (44/113) of studies did not report on how or if models were tuned, and an additional 27.4% (31/113) used ad hoc model tuning, which is generally frowned upon in ML model optimization. Only 15% (17/113) of studies performed direct comparisons of results with other models, severely limiting the interpretation of results. Conclusions: This review highlights the notable limitations of current ML systems and techniques that may contribute to a gap between reported performance in research and the real-life applicability of ML models aiming to detect and predict diseases such as PD.

2.
Sleep ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814827

ABSTRACT

STUDY OBJECTIVES: To evaluate wearable devices and machine learning for detecting sleep apnea in patients with stroke at an acute inpatient rehabilitation facility (IRF). METHODS: A total of 76 individuals with stroke wore a standard home sleep apnea test (ApneaLink Air), a multimodal, wireless wearable sensor system (ANNE), and a research-grade actigraphy device (ActiWatch) for at least one night during their first week after IRF admission as part of a larger clinical trial. Logistic regression algorithms were trained to detect sleep apnea using biometric features obtained from the ANNE sensors and ground truth apnea rating from the ApneaLink Air. Multiple algorithms were evaluated using different sensor combinations and different apnea detection criteria based on the Apnea-Hypopnea Index (AHI≥5, AHI≥15). RESULTS: Seventy-one (96%) participants wore the ANNE sensors for multiple nights. In contrast, only forty-eight participants (63%) could be successfully assessed for OSA by ApneaLink; 28 (37%) refused testing. The best-performing model utilized photoplethysmography (PPG) and finger temperature features to detect moderate-severe sleep apnea (AHI≥15), with 88% sensitivity and a positive likelihood ratio (LR+) of 44.00. This model was tested on additional nights of ANNE data achieving 71% sensitivity (10.14 LR+) when considering each night independently and 86% accuracy when averaging multi-night predictions. CONCLUSIONS: This research demonstrates the feasibility of accurately detecting moderate-severe sleep apnea early in the stroke recovery process using wearable sensors and machine learning techniques. These findings can inform future efforts to improve early detection for post-stroke sleep disorders, thereby enhancing patient recovery and long-term outcomes.

3.
PLoS Comput Biol ; 20(5): e1012169, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38820571

ABSTRACT

On any given day, we make countless reaching movements to objects around us. While such ubiquity may suggest uniformity, each movement's speed is unique-why is this? Reach speed is known to be influenced by accuracy; we slow down to sustain high accuracy. However, in other forms of movement like walking or running, metabolic cost is often the primary determinant of movement speed. Here we bridge this gap and ask: how do metabolic cost and accuracy interact to determine speed of reaching movements? First, we systematically measure the effect of increasing mass on the metabolic cost of reaching across a range of movement speeds. Next, in a sequence of three experiments, we examine how added mass affects preferred reaching speed across changing accuracy requirements. We find that, while added mass consistently increases metabolic cost thereby leading to slower metabolically optimal movement speeds, self-selected reach speeds are slower than those predicted by an optimization of metabolic cost alone. We then demonstrate how a single model that considers both accuracy and metabolic costs can explain preferred movement speeds. Together, our findings provide a unifying framework to illuminate the combined effects of metabolic cost and accuracy on movement speed and highlight the integral role metabolic cost plays in determining reach speed.

4.
Phys Ther ; 104(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38169444

ABSTRACT

OBJECTIVE: Inpatient rehabilitation represents a critical setting for stroke treatment, providing intensive, targeted therapy and task-specific practice to minimize a patient's functional deficits and facilitate their reintegration into the community. However, impairment and recovery vary greatly after stroke, making it difficult to predict a patient's future outcomes or response to treatment. In this study, the authors examined the value of early-stage wearable sensor data to predict 3 functional outcomes (ambulation, independence, and risk of falling) at rehabilitation discharge. METHODS: Fifty-five individuals undergoing inpatient stroke rehabilitation participated in this study. Supervised machine learning classifiers were retrospectively trained to predict discharge outcomes using data collected at hospital admission, including patient information, functional assessment scores, and inertial sensor data from the lower limbs during gait and/or balance tasks. Model performance was compared across different data combinations and was benchmarked against a traditional model trained without sensor data. RESULTS: For patients who were ambulatory at admission, sensor data improved the predictions of ambulation and risk of falling (with weighted F1 scores increasing by 19.6% and 23.4%, respectively) and maintained similar performance for predictions of independence, compared to a benchmark model without sensor data. The best-performing sensor-based models predicted discharge ambulation (community vs household), independence (high vs low), and risk of falling (normal vs high) with accuracies of 84.4%, 68.8%, and 65.9%, respectively. Most misclassifications occurred with admission or discharge scores near the classification boundary. For patients who were nonambulatory at admission, sensor data recorded during simple balance tasks did not offer predictive value over the benchmark models. CONCLUSION: These findings support the continued investigation of wearable sensors as an accessible, easy-to-use tool to predict the functional recovery after stroke. IMPACT: Accurate, early prediction of poststroke rehabilitation outcomes from wearable sensors would improve our ability to deliver personalized, effective care and discharge planning in the inpatient setting and beyond.


Subject(s)
Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Retrospective Studies , Treatment Outcome
5.
Arch Phys Med Rehabil ; 105(3): 546-557, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37907160

ABSTRACT

OBJECTIVE: To compare the accuracy and reliability of 10 different accelerometer-based step-counting algorithms for individuals with lower limb loss, accounting for different clinical characteristics and real-world activities. DESIGN: Cross-sectional study. SETTING: General community setting (ie, institutional research laboratory and community free-living). PARTICIPANTS: Forty-eight individuals with a lower limb amputation (N=48) wore an ActiGraph (AG) wGT3x-BT accelerometer proximal to the foot of their prosthetic limb during labeled indoor/outdoor activities and community free-living. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Intraclass correlation coefficient (ICC), absolute and root mean square error (RMSE), and Bland Altman plots were used to compare true (manual) step counts to estimated step counts from the proprietary AG Default algorithm and low frequency extension filter, as well as from 8 novel algorithms based on continuous wavelet transforms, fast Fourier transforms (FFTs), and peak detection. RESULTS: All algorithms had excellent agreement with manual step counts (ICC>0.9). The AG Default and FFT algorithms had the highest overall error (RMSE=17.81 and 19.91 steps, respectively), widest limits of agreement, and highest error during outdoor and ramp ambulation. The AG Default algorithm also had among the highest error during indoor ambulation and stairs, while a FFT algorithm had the highest error during stationary tasks. Peak detection algorithms, especially those using pre-set parameters with a trial-specific component, had among the lowest error across all activities (RMSE=4.07-8.99 steps). CONCLUSIONS: Because of its simplicity and accuracy across activities and clinical characteristics, we recommend the peak detection algorithm with set parameters to count steps using a prosthetic-worn AG among individuals with lower limb loss for clinical and research applications.


Subject(s)
Artificial Limbs , Humans , Accelerometry , Cross-Sectional Studies , Reproducibility of Results , Algorithms
6.
Ann Rehabil Med ; 47(6): 444-458, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38093518

ABSTRACT

Artificial intelligence (AI) tools are increasingly able to learn from larger and more complex data, thus allowing clinicians and scientists to gain new insights from the information they collect about their patients every day. In rehabilitation medicine, AI can be used to find patterns in huge amounts of healthcare data. These patterns can then be leveraged at the individual level, to design personalized care strategies and interventions to optimize each patient's outcomes. However, building effective AI tools requires many careful considerations about how we collect and handle data, how we train the models, and how we interpret results. In this perspective, we discuss some of the current opportunities and challenges for AI in rehabilitation. We first review recent trends in AI for the screening, diagnosis, treatment, and continuous monitoring of disease or injury, with a special focus on the different types of healthcare data used for these applications. We then examine potential barriers to designing and integrating AI into the clinical workflow, and we propose an end-to-end framework to address these barriers and guide the development of effective AI for rehabilitation. Finally, we present ideas for future work to pave the way for AI implementation in real-world rehabilitation practices.

7.
PLoS One ; 18(9): e0291408, 2023.
Article in English | MEDLINE | ID: mdl-37725613

ABSTRACT

INTRODUCTION: Developmental disabilities and neuromotor delay adversely affect long-term neuromuscular function and quality of life. Current evidence suggests that early therapeutic intervention reduces the severity of motor delay by harnessing neuroplastic potential during infancy. To date, most early therapeutic intervention trials are of limited duration and do not begin soon after birth and thus do not take full advantage of early neuroplasticity. The Corbett Ryan-Northwestern-Shirley Ryan AbilityLab-Lurie Children's Infant Early Detection, Intervention and Prevention Project (Project Corbett Ryan) is a multi-site longitudinal randomized controlled trial to evaluate the efficacy of an evidence-based physical therapy intervention initiated in the neonatal intensive care unit (NICU) and continuing to 12 months of age (corrected when applicable). The study integrates five key principles: active learning, environmental enrichment, caregiver engagement, a strengths-based approach, and high dosage (ClinicalTrials.gov identifier NCT05568264). METHODS: We will recruit 192 infants at risk for neuromotor delay who were admitted to the NICU. Infants will be randomized to either a standard-of-care group or an intervention group; infants in both groups will have access to standard-of-care services. The intervention is initiated in the NICU and continues in the infant's home until 12 months of age. Participants will receive twice-weekly physical therapy sessions and caregiver-guided daily activities, assigned by the therapist, targeting collaboratively identified goals. We will use various standardized clinical assessments (General Movement Assessment; Bayley Scales of Infant and Toddler Development, 4th Edition (Bayley-4); Test of Infant Motor Performance; Pediatric Quality of Life Inventory Family Impact Module; Alberta Infant Motor Scale; Neurological, Sensory, Motor, Developmental Assessment; Hammersmith Infant Neurological Examination) as well as novel technology-based tools (wearable sensors, video-based pose estimation) to evaluate neuromotor status and development throughout the course of the study. The primary outcome is the Bayley-4 motor score at 12 months; we will compare scores in infants receiving the intervention vs. standard-of-care therapy.


Subject(s)
Intensive Care Units, Neonatal , Quality of Life , Infant, Newborn , Child , Humans , Infant , Physical Therapy Modalities , Alberta , Allied Health Personnel , Randomized Controlled Trials as Topic
8.
NPJ Digit Med ; 6(1): 148, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37587211

ABSTRACT

When children are discharged from the hospital after surgery, their caregivers often rely on subjective assessments (e.g., appetite, fatigue) to monitor postoperative recovery as objective assessment tools are scarce at home. Such imprecise and one-dimensional evaluations can result in unwarranted emergency department visits or delayed care. To address this gap in postoperative monitoring, we evaluated the ability of a consumer-grade wearable device, Fitbit, which records multimodal data about daily physical activity, heart rate, and sleep, in detecting abnormal recovery early in children recovering after appendectomy. One hundred and sixty-two children, ages 3-17 years old, who underwent an appendectomy (86 complicated and 76 simple cases of appendicitis) wore a Fitbit device on their wrist for 21 days postoperatively. Abnormal recovery events (i.e., abnormal symptoms or confirmed postoperative complications) that arose during this period were gathered from medical records and patient reports. Fitbit-derived measures, as well as demographic and clinical characteristics, were used to train machine learning models to retrospectively detect abnormal recovery in the two days leading up to the event for patients with complicated and simple appendicitis. A balanced random forest classifier accurately detected 83% of these abnormal recovery days in complicated appendicitis and 70% of abnormal recovery days in simple appendicitis prior to the true report of a symptom/complication. These results support the development of machine learning algorithms to predict onset of abnormal symptoms and complications in children undergoing surgery, and the use of consumer wearables as monitoring tools for early detection of postoperative events.

9.
Physiol Meas ; 44(8)2023 08 30.
Article in English | MEDLINE | ID: mdl-37557187

ABSTRACT

Objective.Commercial wearable sensor systems are a promising alternative to costly laboratory equipment for clinical gait evaluation, but their accuracy for individuals with gait impairments is not well established. Therefore, we investigated the validity and reliability of the APDM Opal wearable sensor system to measure spatiotemporal gait parameters for healthy controls and individuals with chronic stroke.Approach.Participants completed the 10 m walk test over an instrumented mat three times in different speed conditions. We compared performance of Opal sensors to the mat across different walking speeds and levels of step length asymmetry in the two populations.Main results. Gait speed and stride length measures achieved excellent reliability, though they were systematically underestimated by 0.11 m s-1and 0.12 m, respectively. The stride and step time measures also achieved excellent reliability, with no significant errors (median absolute percentage error <6.00%,p> 0.05). Gait phase duration measures achieved moderate-to-excellent reliability, with relative errors ranging from 4.13%-21.59%. Across gait parameters, the relative error decreased by 0.57%-9.66% when walking faster than 1.30 m s-1; similar reductions occurred for step length symmetry indices lower than 0.10.Significance. This study supports the general use of Opal wearable sensors to obtain quantitative measures of post-stroke gait impairment. These measures should be interpreted cautiously for individuals with moderate-severe asymmetry or walking speeds slower than 0.80 m s-1.


Subject(s)
Stroke , Wearable Electronic Devices , Humans , Walking Speed , Reproducibility of Results , Gait , Walking , Stroke/complications
10.
Children (Basel) ; 10(2)2023 Jan 27.
Article in English | MEDLINE | ID: mdl-36832351

ABSTRACT

Impaired gait is a common sequela in bilateral spastic cerebral palsy. We compared the effects of two novel research interventions-transcranial direct current stimulation and virtual reality-on spatiotemporal and kinetic gait impairments in children with bilateral spastic CP. Forty participants were randomized to receive either transcranial direct current stimulation or virtual reality training. Both groups received standard-of-care gait therapy during the assigned intervention and for the subsequent 10 weeks afterward. Spatiotemporal and kinetic gait parameters were evaluated at three different times: (i) before starting the intervention, (ii) after two weeks of intervention, and (iii) 10 weeks after intervention completion. Both groups exhibited higher velocity and cadence, as well as longer stance time, step length, and stride length after intervention (p < 0.001). Only the transcranial direct current stimulation group exhibited increased maximum force and maximum peak pressure after intervention (p's ≤ 0.001), with continued improvements in spatiotemporal parameters at follow-up. The transcranial direct current stimulation group had higher gait velocities, stride length, and step length at follow-up compared to the virtual reality group (p ≤ 0.02). These findings suggest that transcranial direct current stimulation has a broader and longer-lasting effect on gait than virtual reality training for children with bilateral spastic cerebral palsy.

11.
Children (Basel) ; 9(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36291373

ABSTRACT

Early childhood is an important development period for establishing healthy physical activity (PA) habits. The objective of this study was to evaluate PA levels in a representative sample of U.S. preschool-aged children. The study sample included 301 participants (149 girls, 3-5 years of age) in the 2012 U.S. National Health and Examination Survey National Youth Fitness Survey. Participants were asked to wear an ActiGraph accelerometer on their wrist for 7 days. A machine learning random forest classification algorithm was applied to accelerometer data to estimate daily time spent in moderate- and vigorous-intensity PA (MVPA; the sum of minutes spent in running, walking, and other moderate- and vigorous-intensity PA) and total PA (the sum of MVPA and light-intensity PA). We estimated that U.S. preschool-aged children engaged in 28 min/day of MVPA and 361 min/day of total PA, on average. MVPA and total PA levels were not significantly different between males and females. This study revealed that U.S. preschool-aged children engage in lower levels of MVPA and higher levels of total PA than the minimum recommended by the World Health Organization.

12.
IEEE J Transl Eng Health Med ; 10: 2100711, 2022.
Article in English | MEDLINE | ID: mdl-36304845

ABSTRACT

OBJECTIVE: A primary goal of acute stroke rehabilitation is to maximize functional recovery and help patients reintegrate safely in the home and community. However, not all patients have the same potential for recovery, making it difficult to set realistic therapy goals and to anticipate future needs for short- or long-term care. The objective of this study was to test the value of high-resolution data from wireless, wearable motion sensors to predict post-stroke ambulation function following inpatient stroke rehabilitation. METHOD: Supervised machine learning algorithms were trained to classify patients as either household or community ambulators at discharge based on information collected upon admission to the inpatient facility (N=33-35). Inertial measurement unit (IMU) sensor data recorded from the ankles and the pelvis during a brief walking bout at admission (10 meters, or 60 seconds walking) improved the prediction of discharge ambulation ability over a traditional prediction model based on patient demographics, clinical information, and performance on standardized clinical assessments. RESULTS: Models incorporating IMU data were more sensitive to patients who changed ambulation category, improving the recall of community ambulators at discharge from 85% to 89-93%. CONCLUSIONS: This approach demonstrates significant potential for the early prediction of post-rehabilitation walking outcomes in patients with stroke using small amounts of data from three wearable motion sensors. CLINICAL IMPACT: Accurately predicting a patient's functional recovery early in the rehabilitation process would transform our ability to design personalized care strategies in the clinic and beyond. This work contributes to the development of low-cost, clinically-implementable prognostic tools for data-driven stroke treatment.


Subject(s)
Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Inpatients , Walking , Stroke/complications
13.
Sensors (Basel) ; 22(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015951

ABSTRACT

Sleep plays a critical role in stroke recovery. However, there are limited practices to measure sleep for individuals with stroke, thus inhibiting our ability to identify and treat poor sleep quality. Wireless, body-worn sensors offer a solution for continuous sleep monitoring. In this study, we explored the feasibility of (1) collecting overnight biophysical data from patients with subacute stroke using a simple sensor system and (2) constructing machine-learned algorithms to detect sleep stages. Ten individuals with stroke in an inpatient rehabilitation hospital wore two wireless sensors during a single night of sleep. Polysomnography served as ground truth to classify different sleep stages. A population model, trained on data from multiple patients and tested on data from a separate patient, performed poorly for this limited sample. Personal models trained on data from one patient and tested on separate data from the same patient demonstrated markedly improved performance over population models and research-grade wearable devices to detect sleep/wake. Ultimately, the heterogeneity of biophysical signals after stroke may present a challenge in building generalizable population models. Personal models offer a provisional method to capture high-resolution sleep metrics from simple wearable sensors by leveraging a single night of polysomnography data.


Subject(s)
Stroke Rehabilitation , Stroke , Wearable Electronic Devices , Humans , Polysomnography/methods , Sleep
14.
Digit Biomark ; 5(2): 167-175, 2021.
Article in English | MEDLINE | ID: mdl-34723069

ABSTRACT

INTRODUCTION: Difficulty swallowing (dysphagia) occurs frequently in patients with neurological disorders and can lead to aspiration, choking, and malnutrition. Dysphagia is typically diagnosed using costly, invasive imaging procedures or subjective, qualitative bedside examinations. Wearable sensors are a promising alternative to noninvasively and objectively measure physiological signals relevant to swallowing. An ongoing challenge with this approach is consolidating these complex signals into sensitive, clinically meaningful metrics of swallowing performance. To address this gap, we propose 2 novel, digital monitoring tools to evaluate swallows using wearable sensor data and machine learning. METHODS: Biometric swallowing and respiration signals from wearable, mechano-acoustic sensors were compared between patients with poststroke dysphagia and nondysphagic controls while swallowing foods and liquids of different consistencies, in accordance with the Mann Assessment of Swallowing Ability (MASA). Two machine learning approaches were developed to (1) classify the severity of impairment for each swallow, with model confidence ratings for transparent clinical decision support, and (2) compute a similarity measure of each swallow to nondysphagic performance. Task-specific models were trained using swallow kinematics and respiratory features from 505 swallows (321 from patients and 184 from controls). RESULTS: These models provide sensitive metrics to gauge impairment on a per-swallow basis. Both approaches demonstrate intrasubject swallow variability and patient-specific changes which were not captured by the MASA alone. Sensor measures encoding respiratory-swallow coordination were important features relating to dysphagia presence and severity. Puree swallows exhibited greater differences from controls than saliva swallows or liquid sips (p < 0.037). DISCUSSION: Developing interpretable tools is critical to optimize the clinical utility of novel, sensor-based measurement techniques. The proof-of-concept models proposed here provide concrete, communicable evidence to track dysphagia recovery over time. With refined training schemes and real-world validation, these tools can be deployed to automatically measure and monitor swallowing in the clinic and community for patients across the impairment spectrum.

15.
Proc Natl Acad Sci U S A ; 118(43)2021 10 26.
Article in English | MEDLINE | ID: mdl-34663725

ABSTRACT

Early identification of atypical infant movement behaviors consistent with underlying neuromotor pathologies can expedite timely enrollment in therapeutic interventions that exploit inherent neuroplasticity to promote recovery. Traditional neuromotor assessments rely on qualitative evaluations performed by specially trained personnel, mostly available in tertiary medical centers or specialized facilities. Such approaches are high in cost, require geographic proximity to advanced healthcare resources, and yield mostly qualitative insight. This paper introduces a simple, low-cost alternative in the form of a technology customized for quantitatively capturing continuous, full-body kinematics of infants during free living conditions at home or in clinical settings while simultaneously recording essential vital signs data. The system consists of a wireless network of small, flexible inertial sensors placed at strategic locations across the body and operated in a wide-bandwidth and time-synchronized fashion. The data serve as the basis for reconstructing three-dimensional motions in avatar form without the need for video recordings and associated privacy concerns, for remote visual assessments by experts. These quantitative measurements can also be presented in graphical format and analyzed with machine-learning techniques, with potential to automate and systematize traditional motor assessments. Clinical implementations with infants at low and at elevated risks for atypical neuromotor development illustrates application of this system in quantitative and semiquantitative assessments of patterns of gross motor skills, along with body temperature, heart rate, and respiratory rate, from long-term and follow-up measurements over a 3-mo period following birth. The engineering aspects are compatible for scaled deployment, with the potential to improve health outcomes for children worldwide via early, pragmatic detection methods.


Subject(s)
Infant Behavior/physiology , Monitoring, Physiologic/instrumentation , Movement/physiology , Vital Signs/physiology , Wireless Technology/instrumentation , Bias , Child , Equipment Design , Heart Rate , Humans , Imaging, Three-Dimensional , Infant , Miniaturization , Monitoring, Physiologic/statistics & numerical data , Respiratory Rate , Skin , Video Recording , Wireless Technology/statistics & numerical data
16.
J Rehabil Assist Technol Eng ; 8: 20556683211035057, 2021.
Article in English | MEDLINE | ID: mdl-34471545

ABSTRACT

INTRODUCTION: After stroke, upper limb impairment affects independent performance of activities of daily living. We evaluated the usability, functionality, and efficacy of a myoelectric elbow-wrist-hand orthosis to provide support, limit unsafe motion, and enhance the functional motion of paralyzed or weak upper limbs. METHODS: Individuals with stroke participated in a single-session study to evaluate the device. Ability to activate the device was tested in supported and unsupported shoulder position, as well as the elbow range of motion, ability to maintain elbow position, and ability to lift and hold a range of weights while using the device. RESULTS: No adverse events were reported. 71% of users were able to operate the device in all three active myoelectric activation modes (Biceps, Triceps, Dual) during testing. Users were able to hold a range of wrist weights (0.5-2 lbs) for 10-120 seconds, with the largest percentage of participants able to hold weights with the device in Biceps Mode. CONCLUSIONS: The myoelectric elbow-wrist-hand orthosis improved range of motion during use and was efficacious at remediating upper extremity impairment after stroke. All users could operate the device in at least one mode, and most could lift and hold weights representative of some everyday objects using the device.

17.
J Neuroeng Rehabil ; 17(1): 71, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32522242

ABSTRACT

BACKGROUND: In clinical practice, therapists often rely on clinical outcome measures to quantify a patient's impairment and function. Predicting a patient's discharge outcome using baseline clinical information may help clinicians design more targeted treatment strategies and better anticipate the patient's assistive needs and discharge care plan. The objective of this study was to develop predictive models for four standardized clinical outcome measures (Functional Independence Measure, Ten-Meter Walk Test, Six-Minute Walk Test, Berg Balance Scale) during inpatient rehabilitation. METHODS: Fifty stroke survivors admitted to a United States inpatient rehabilitation hospital participated in this study. Predictors chosen for the clinical discharge scores included demographics, stroke characteristics, and scores of clinical tests at admission. We used the Pearson product-moment and Spearman's rank correlation coefficients to calculate correlations among clinical outcome measures and predictors, a cross-validated Lasso regression to develop predictive equations for discharge scores of each clinical outcome measure, and a Random Forest based permutation analysis to compare the relative importance of the predictors. RESULTS: The predictive equations explained 70-77% of the variance in discharge scores and resulted in a normalized error of 13-15% for predicting the outcomes of new patients. The most important predictors were clinical test scores at admission. Additional variables that affected the discharge score of at least one clinical outcome were time from stroke onset to rehabilitation admission, age, sex, body mass index, race, and diagnosis of dysphasia or speech impairment. CONCLUSIONS: The models presented in this study could help clinicians and researchers to predict the discharge scores of clinical outcomes for individuals enrolled in an inpatient stroke rehabilitation program that adheres to U.S. Medicare standards.


Subject(s)
Machine Learning , Outcome Assessment, Health Care , Stroke Rehabilitation/methods , Treatment Outcome , Adult , Aged , Aged, 80 and over , Female , Humans , Inpatients , Male , Middle Aged , Stroke/physiopathology , United States , Young Adult
18.
Brain Inj ; 34(8): 1118-1126, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32530717

ABSTRACT

OBJECTIVE: To compare the impacts of yoga-based physical therapy versus a seated rest within the context of standard rehabilitation practice on sleep, heart rate variability (HRV), anxiety, and fatigue during acute traumatic brain injury (TBI) rehabilitation. METHODS: Eleven individuals participated in this crossover study involving the following interventions in a randomized order: group yoga-based physical therapy (YPT), conventional physical therapy (CPT), and group seated rest in a relaxing environment (SR). HRV and self-reported anxiety and fatigue were measured immediately before and after each group, and sleep after each condition and at baseline. Data was analyzed using generalized linear mixed models with repeated measures. RESULTS: The interaction between time and treatment was statistically significant (p = .0203). For the SR treatment, wake after sleep onset (WASO) rate was reduced from 14.99 to 10.60 (IRR = 0.71; p = .006). Time and treatment were not found to be statistically significantly associated with any of the secondary outcomes. CONCLUSION: Yoga-based physical therapy is feasible and safe in the inpatient rehabilitation setting following TBI. Sleep quality improved following the addition of a one-hour seated rest in a relaxing environment to a standard rehabilitation daily schedule, suggesting that structured rest time may be beneficial to sleep hygiene during inpatient rehabilitation following TBI. ClinicalTrials.Gov Registration Number: NCT03701594.


Subject(s)
Brain Injuries, Traumatic , Yoga , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Cross-Over Studies , Humans , Physical Therapy Modalities , Pilot Projects
19.
J Neuroeng Rehabil ; 17(1): 52, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32312287

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is a progressive neurological disease, with characteristic motor symptoms such as tremor and bradykinesia. There is a growing interest to continuously monitor these and other symptoms through body-worn sensor technology. However, limited battery life and memory capacity hinder the potential for continuous, long-term monitoring with these devices. There is little information available on the relative value of adding sensors, increasing sampling rate, or computing complex signal features, all of which may improve accuracy of symptom detection at the expense of computational resources. Here we build on a previous study to investigate the relationship between data measurement characteristics and accuracy when using wearable sensor data to classify tremor and bradykinesia in patients with PD. METHODS: Thirteen individuals with PD wore a flexible, skin-mounted sensor (collecting tri-axial accelerometer and gyroscope data) and a commercial smart watch (collecting tri-axial accelerometer data) on their predominantly affected hand. The participants performed a series of standardized motor tasks, during which a clinician scored the severity of tremor and bradykinesia in that limb. Machine learning models were trained on scored data to classify tremor and bradykinesia. Model performance was compared when using different types of sensors (accelerometer and/or gyroscope), different data sampling rates (up to 62.5 Hz), and different categories of pre-engineered features (up to 148 features). Performance was also compared between the flexible sensor and smart watch for each analysis. RESULTS: First, there was no effect of device type for classifying tremor symptoms (p > 0.34), but bradykinesia models incorporating gyroscope data performed slightly better (up to 0.05 AUROC) than other models (p = 0.01). Second, model performance decreased with sampling frequency (p < 0.001) for tremor, but not bradykinesia (p > 0.47). Finally, model performance for both symptoms was maintained after substantially reducing the feature set. CONCLUSIONS: Our findings demonstrate the ability to simplify measurement characteristics from body-worn sensors while maintaining performance in PD symptom detection. Understanding the trade-off between model performance and data resolution is crucial to design efficient, accurate wearable sensing systems. This approach may improve the feasibility of long-term, continuous, and real-time monitoring of PD symptoms by reducing computational burden on wearable devices.


Subject(s)
Monitoring, Physiologic/instrumentation , Parkinson Disease/classification , Wearable Electronic Devices , Aged , Female , Humans , Hypokinesia/diagnosis , Hypokinesia/etiology , Male , Middle Aged , Parkinson Disease/diagnosis , Parkinson Disease/physiopathology
20.
NPJ Digit Med ; 2: 131, 2019.
Article in English | MEDLINE | ID: mdl-31886412

ABSTRACT

Polysomnography (PSG) is the current gold standard in high-resolution sleep monitoring; however, this method is obtrusive, expensive, and time-consuming. Conversely, commercially available wrist monitors such as ActiWatch can monitor sleep for multiple days and at low cost, but often overestimate sleep and cannot differentiate between sleep stages, such as rapid eye movement (REM) and non-REM. Wireless wearable sensors are a promising alternative for their portability and access to high-resolution data for customizable analytics. We present a multimodal sensor system measuring hand acceleration, electrocardiography, and distal skin temperature that outperforms the ActiWatch, detecting wake and sleep with a recall of 74.4% and 90.0%, respectively, as well as wake, non-REM, and REM with recall of 73.3%, 59.0%, and 56.0%, respectively. This approach will enable clinicians and researchers to more easily, accurately, and inexpensively assess long-term sleep patterns, diagnose sleep disorders, and monitor risk factors for disease in both laboratory and home settings.

SELECTION OF CITATIONS
SEARCH DETAIL
...