Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Math Phys Eng Sci ; 475(2228): 20190154, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31534422

ABSTRACT

In a previous paper, we analysed the Keller-Rubinow formulation of Ostwald's supersaturation theory for the formation of Liesegang rings or Liesegang bands, and found that the model is ill-posed, in the sense that after the termination of the first crystal front growth, secondary bands form, as in the experiment, but these are numerically found to be a single grid space wide, and thus an artefact of the numerical method. This ill-posedness is due to the discontinuity in the crystal growth rate, which itself reflects the supersaturation threshold inherent in the theory. Here we show that the ill-posedness can be resolved by the inclusion of a relaxation mechanism describing an impurity coverage fraction, which physically enables the transition in heterogeneous nucleation from precipitate-free impurity to precipitate-covered impurity.

2.
Proc Math Phys Eng Sci ; 473(2205): 20170128, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28989302

ABSTRACT

We study the model of Keller & Rubinow (Keller & Rubinow 1981 J. Chem. Phys74, 5000-5007. (doi:10.1063/1.441752)) describing the formation of Liesegang rings due to Ostwald's supersaturation mechanism. Keller and Rubinow provided an approximate solution both for the growth and equilibration of the first band, and also for the formation of secondary bands, based on a presumed asymptotic limit. However, they did not provide a parametric basis for the assumptions in their solution, nor did they provide any numerical corroboration, particularly of the secondary band formation. Here, we provide a different asymptotic solution, based on a specific parametric limit, and we show that the growth and subsequent cessation of the first band can be explained. We also show that the model is unable to explain the formation of finite width secondary bands, and we confirm this result by numerical computation. We conclude that the model is not fully posed, lacking a transition variable which can describe the hysteretic switch across the nucleation threshold.

3.
R Soc Open Sci ; 4(6): 170062, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28680666

ABSTRACT

Asymptotic methods are employed to revisit an earlier model for oscillation-mark formation in the continuous casting of steel. A systematic non-dimensionalization of the governing equations, which was not carried out previously, leads to a model with 12 dimensionless parameters. Analysis is provided in the same parameter regime as for the earlier model, and surprisingly simple analytical solutions are found for the oscillation-mark profiles; these are found to agree reasonably well with the numerical solution in the earlier model and very well with fold-type oscillation marks that have been obtained in more recent experimental work. The benefits of this approach, when compared with time-consuming numerical simulations, are discussed in the context of auxiliary models for macrosegregation and thermomechanical stresses and strains.

4.
Phys Rev E ; 94(4-1): 043110, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27841544

ABSTRACT

We investigate the stability of thin liquid curtains with respect to two-dimensional perturbations. The dynamics of perturbations with wavelengths exceeding (or comparable to) the curtain's thickness are examined using the lubrication approximation (or a kind of geometric optics). It is shown that, contrary to the previous theoretical results, but in agreement with the experimental ones, all curtains are stable with respect to small perturbations. Large perturbations can still be unstable, however, but only if they propagate upstream and, thus, disrupt the curtain at its outlet. This circumstance enables us to obtain an effective stability criterion by deriving an existence condition for upstream propagating perturbations.

5.
J Math Biol ; 71(3): 647-68, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25240390

ABSTRACT

We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term.


Subject(s)
Biofilms/growth & development , Models, Biological , Biomass , Computer Simulation , Mathematical Concepts , Porosity , Rheology
6.
J Colloid Interface Sci ; 354(1): 421-3, 2011 Feb 01.
Article in English | MEDLINE | ID: mdl-21106203

ABSTRACT

We consider the situation where a multicomponent solid is etched using one or more acids. Of fundamental interest is the rate of surface etching but when this involves multicomponent surface reactions, it becomes unclear how the overall rate can be estimated. In this paper, we sketch a simple model designed to determine the effective etching rate by means of an atomic scale model of the etching process.

7.
J Colloid Interface Sci ; 314(1): 324-8, 2007 Oct 01.
Article in English | MEDLINE | ID: mdl-17561065

ABSTRACT

We examine a simple model of spin-coating with "small" evaporation effects and using a formal asymptotic approach we improve on previous approximate models.

SELECTION OF CITATIONS
SEARCH DETAIL
...