Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(23): 15185-15193, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38809690

ABSTRACT

Observation of interlayer, charge transfer (CT) excitons in van der Waals heterostructures (vdWHs) based on 2D-2D systems has been well investigated. While conceptually interesting, these charge transfer excitons are highly delocalized and spatially localizing them requires twisting layers at very specific angles. This issue of localizing the CT excitons can be overcome via making nanoplate-2D material heterostructures (N2DHs) where one of the components is a spatially quantum confined medium. Here, we demonstrate the formation of CT excitons in a mixed dimensional system comprising MoSe2 and WSe2 monolayers and CdSe/CdS-based core/shell nanoplates (NPLs). Spectral signatures of CT excitons in our N2DHs were resolved locally at the 2D/single-NPL heterointerface using tip-enhanced photoluminescence (TEPL) at room temperature. By varying both the 2D material and the shell thickness of the NPLs and applying an out-of-plane electric field, the exciton resonance energy was tuned by up to 100 meV. Our finding is a significant step toward the realization of highly tunable N2DH-based next-generation photonic devices.

3.
Sci Rep ; 13(1): 21258, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38040799

ABSTRACT

Understanding biomineralization relies on imaging chemically heterogeneous organic-inorganic interfaces across a hierarchy of spatial scales. Further, organic minority phases are often responsible for emergent inorganic structures from the atomic arrangement of different polymorphs, to nano- and micrometer crystal dimensions, up to meter size mollusk shells. The desired simultaneous chemical and elemental imaging to identify sparse organic moieties across a large field-of-view with nanometer spatial resolution has not yet been achieved. Here, we combine nanoscale secondary ion mass spectroscopy (NanoSIMS) with spectroscopic IR s-SNOM imaging for simultaneous chemical, molecular, and elemental nanoimaging. At the example of Pinctada margaritifera mollusk shells we identify and resolve ~ 50 nm interlamellar protein sheets periodically arranged in regular ~ 600 nm intervals. The striations typically appear ~ 15 µm from the nacre-prism boundary at the interface between disordered neonacre to mature nacre. Using the polymorph distinctive IR-vibrational carbonate resonance, the nacre and prismatic regions are consistently identified as aragonite ([Formula: see text] cm-1) and calcite ([Formula: see text] cm-1), respectively. We observe previously unreported morphological features including aragonite subdomains encapsulated in extensions of the prism-covering organic membrane and regions of irregular nacre tablet formation coincident with dispersed organics. We also identify a ~ 200 nm region in the incipient nacre region with less well-defined crystal structure and integrated organics. These results show with the identification of the interlamellar protein layer how correlative nano-IR chemical and NanoSIMS elemental imaging can help distinguish different models proposed for shell growth in particular, and how organic function may relate to inorganic structure in other biomineralized systems in general.

4.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37781874

ABSTRACT

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/analysis , Water/analysis , Mass Spectrometry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods
5.
Nanoscale ; 15(12): 5786-5797, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36857667

ABSTRACT

Polyoxometalates (POMs) with localized radical or open-shell metal sites have the potential to be used as transformative electronic spin based molecular qubits (MQs) for quantum computing (QC). For practical applications, MQs have to be immobilized in electronically or optically addressable arrays which introduces interactions with supports as well as neighboring POMs. Herein, we synthesized Keggin POMs with both tungsten (W) and vanadium (V) addenda atoms. Ion soft landing, a highly-controlled surface modification technique, was used to deliver mass-selected V-doped POMs to different self-assembled monolayer surfaces on gold (SAMs) without the solvent, counterions, and contaminants that normally accompany deposition from solution. Alkylthiol, perfluorinated, and carboxylic-acid terminated monolayers were employed as representative model supports on which different POM-surface and POM-POM interactions were characterized. We obtained insights into the vibrational properties of supported V-doped POMs and how they are perturbed by interactions with specific surface functional groups using infrared reflection absorption and scattering-type scanning near-field optical microscopy, as well as tip enhanced Raman spectroscopy. Different functional groups on SAMs and nanoscale heterogeneity are both shown to modulate the observed spectroscopic signatures. Spectral shifts are also found to be dependent on POM-POM interactions. The electronic structure of the V-doped POMs was determined in the gas phase using negative ion photoelectron spectroscopy and on surfaces with scanning Kelvin probe microscopy. The chemical functionality and charge transfer properties of the SAMs are demonstrated to exert an influence on the charge state and electronic configuration of supported V-doped POMs. The geometric and electronic structure of the POMs were also calculated using density functional theory. Our joint experimental and theoretical findings provide insight into how V substitution as well as POM-surface and POM-POM interactions influence the vibrational properties of POMs.

6.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Article in English | MEDLINE | ID: mdl-36203091

ABSTRACT

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Microplastics , Plastics/analysis , Plastics/chemistry , Atmosphere , Environmental Monitoring , Water Pollutants, Chemical/analysis
7.
J Phys Chem Lett ; 13(17): 3886-3889, 2022 May 05.
Article in English | MEDLINE | ID: mdl-35470671

ABSTRACT

Tip-enhanced Raman spectroscopy (TERS) is a powerful technique that enables ultrahigh spatial resolution and ultrasensitive chemical imaging. This technique's ability to track plasmon-induced/enhanced chemical reactions in real space has gained increasing popularity in recent years. In this study, we expose inherent difficulties associated with assigning TERS signatures that accompany chemical transformations. Namely, distinct selection rules as well as the possibility of multiple physical processes/chemical reaction pathways complicate spectral assignments and necessitate caution in assigning the experimental observables. We illustrate the latter using 4,4'-dimercaptostilbene-functionalized plasmonic silver nanocubes, wherein we identify the TERS signatures of product formation, molecular charging, multipolar Raman scattering, and preferred molecular orientations that all lead to distinct and assignable spectral patterns.


Subject(s)
Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods
8.
J Chem Phys ; 154(24): 241101, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34241355

ABSTRACT

We combine nanoindentation, herein achieved using atomic force microscopy-based pulsed-force lithography, with tip-enhanced Raman spectroscopy (TERS) and imaging. Our approach entails indentation and multimodal characterization of otherwise flat Au substrates, followed by chemical functionalization and TERS spectral imaging of the indented nanostructures. We find that the resulting structures, which vary in shape and size depending on the tip used to produce them, may sustain nano-confined and significantly enhanced local fields. We take advantage of the latter and illustrate TERS-based ultrasensitive detection/chemical fingerprinting as well as chemical reaction imaging-all using a single platform for nano-lithography, topographic imaging, hyperspectral dark field optical microscopy, and TERS.

9.
J Phys Chem Lett ; 12(14): 3586-3590, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33819047

ABSTRACT

We interrogate para-mercaptobenzoic acid (MBA) molecules chemisorbed onto plasmonic silver nanocubes through tip-enhanced Raman (TER) spectral nanoimaging. Through a detailed examination of the spectra, aided by correlation analysis and density functional theory calculations, we find that MBA chemisorbs onto the plasmonic particles with at least two distinct configurations: S- and CO2-bound. High spatial resolution TER mapping allows us to distinguish between the distinct adsorption geometries with a pixel-limited (<5 nm) spatial resolution under ambient laboratory conditions.

10.
J Phys Chem Lett ; 11(15): 5890-5895, 2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32619091

ABSTRACT

Classical versus quantum plasmons are responsible for the recorded signals in non-contact-mode versus contact-mode tip-enhanced Raman spectroscopy (TERS) and lead to distinct observables. Under otherwise identical experimental conditions, we illustrate the concept through tapping- and contact-mode TERS mapping of chemically functionalized silver nanocubes. Whereas molecular charging, chemical transformations, and optical rectification are prominent observables in contact-mode TERS, the same effects are suppressed using tapping-mode feedback. In effect, this work demonstrates that nanoscale physical and chemical processes can be accessed and/or suppressed on demand in the TERS geometry. The advantages of tapping-mode TERS are otherwise highlighted with the latter in mind.

11.
Nano Lett ; 20(6): 4497-4504, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32356991

ABSTRACT

Imaging biological systems with simultaneous intrinsic chemical specificity and nanometer spatial resolution in their typical native liquid environment has remained a long-standing challenge. Here, we demonstrate a general approach of chemical nanoimaging in liquid based on infrared scattering scanning near-field optical microscopy (IR s-SNOM). It is enabled by combining AFM operation in a fluid cell with evanescent IR illumination via total internal reflection, which provides spatially confined excitation for minimized IR water absorption, reduced far-field background, and enhanced directional signal emission and sensitivity. We demonstrate in-liquid IR s-SNOM vibrational nanoimaging and conformational identification of catalase nanocrystals and spatio-spectral analysis of biomimetic peptoid sheets with monolayer sensitivity and chemical specificity at the few zeptomole level. This work establishes the principles of in-liquid and in situ IR s-SNOM spectroscopic chemical nanoimaging and its general applicability to biomolecular, cellular, catalytic, electrochemical, or other interfaces and nanosystems in liquids or solutions.


Subject(s)
Microscopy, Atomic Force , Nanoparticles , Nanotechnology , Spectrophotometry, Infrared , Vibration
12.
J Phys Chem Lett ; 11(10): 3809-3814, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32340455

ABSTRACT

We revisit the reductive coupling of p-nitrothiophenol (NTP) to form dimercaptoazobenzene (DMAB), herein monitored through gap-mode tip-enhanced Raman spectroscopy (TERS) and nanoimaging. We employ a plasmonic Au probe (100 nm diameter at its apex) illuminated with a 633 nm laser source (50 µW/µm2 at the sample position) to image an NTP-coated faceted silver nanoparticle (∼70 nm diameter). A detailed analysis of the recorded spectra reveals that anionic NTP species contribute to the recorded spectral images, in addition to the more thoroughly described DMAB product. Notably, the signatures of the anions are more pronounced than those of the DMAB product under our present experimental conditions. Our results thus demonstrate that anions and their spectral signatures must be considered in the analysis of plasmon-enhanced optical spectra and images.

13.
J Phys Chem Lett ; 11(8): 2870-2874, 2020 Apr 16.
Article in English | MEDLINE | ID: mdl-32208725

ABSTRACT

Tip-enhanced Raman (TER) spectral images of 4-thiobenzonitrile-coated Au nanorods map the spatial profiles and trace the resonances of dipolar and multipolar plasmonic modes that are characteristic of the imaged particles. For any particular rod, we observe sequential transitions between high-order modes at low frequency shifts and lower-order modes at higher frequencies. We also notice that higher-order modes (up to m = 4) are generally observed for long rods as compared to their shorter analogues, where longitudinal dipolar resonances (m = 1) are observable. In effect, this work adds a new dimension to local optical field mapping via TERS, which we have previously explored. Not only can the magnitudes, vector components, local/nonlocal characters of local optical fields be imaged through molecular TERS, but spatially varying local optical resonances are also direct observables.

14.
J Phys Chem Lett ; 11(7): 2464-2469, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32160470

ABSTRACT

We record nanoscale chemical images of thiobenzonitrile (TBN)-functionalized plasmonic gold nanocubes via tip-enhanced Raman spectroscopy (TERS). The spatially averaged optical response is dominated by conventional (dipolar) TERS scattering from TBN but also contains weaker spectral signatures in the 1225-1500 cm-1 region. The weak optical signatures dominate several of the recorded single-pixel TERS spectra. We can uniquely assign these Raman-forbidden transitions to multipolar Raman scattering, which implicates spatially varying enhanced electric field gradients at plasmonic tip-sample nanojunctions. Specifically, we can assign observations of tip-enhanced electric dipole-magnetic dipole as well as electric dipole-electric quadrupole driven transitions. Multipolar Raman scattering and local optical field gradients both need to be understood and accounted for in the interpretation of TERS spectral images, particularly in ongoing quests aimed at chemical reaction mapping via TERS.

15.
Nano Lett ; 19(2): 708-715, 2019 02 13.
Article in English | MEDLINE | ID: mdl-30668122

ABSTRACT

Light-matter interaction in two-dimensional photonic or phononic materials allows for the confinement and manipulation of free-space radiation at sub-wavelength scales. Most notably, the van der Waals heterostructure composed of graphene (G) and hexagonal boron nitride (hBN) provides for gate-tunable hybrid hyperbolic plasmon phonon-polaritons (HP3). Here, we present the anisotropic flow control and gate-voltage modulation of HP3 modes in G-hBN on an air-Au microstructured substrate. Using broadband infrared synchrotron radiation coupled to a scattering-type near-field optical microscope, we launch HP3 waves in both hBN Reststrahlen bands and observe directional propagation across in-plane heterointerfaces created at the air-Au junction. The HP3 hybridization is modulated by varying the gate voltage between graphene and Au. This modifies the coupling of continuum graphene plasmons with the discrete hBN hyperbolic phonon polaritons, which is described by an extended Fano model. This work represents the first demonstration of the control of polariton propagation, introducing a theoretical approach to describe the breaking of the reflection and transmission symmetry for HP3 modes. Our findings augment the degree of control of polaritons in G-hBN and related hyperbolic metamaterial nanostructures, bringing new opportunities for on-chip nano-optics communication and computing.

16.
Nano Lett ; 18(9): 5499-5505, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30080975

ABSTRACT

Control of photoinduced forces allows nanoparticle manipulation, atom trapping, and fundamental studies of light-matter interactions. Scanning probe microscopy enables the local detection of photoinduced effects with nano-optical imaging and spectroscopy modalities being used for chemical analysis and the study of physical effects. Recently, the development of a novel scanning probe technique has been reported with local chemical sensitivity attributed to the localization and detection of the optical gradient force between a probe tip and sample surface via infrared vibrationally resonant coupling. However, the magnitude and spectral line shape of the observed signals disagree with theoretical predictions of optical gradient forces. Here, we clarify this controversy by resolving and analyzing the interplay of several photoinduced effects between scanning probe tips and infrared resonant materials through spectral and spatial force measurements. Force spectra obtained on IR-active vibrational modes of polymer thin films are symmetric and match the material absorption spectra in contrast to the dispersive spectral line shape expected for the optical gradient force response. Sample thickness dependence shows continuous increase in force signal beyond the thickness where the optical dipole force would saturate. Our results illustrate that photoinduced force interactions between scanning probe tips and infrared-resonant materials are dominated by short-range thermal expansion and possibly long-range thermally induced photoacoustic effects. At the same time, we provide a guideline to detect and discriminate optical gradient forces from other photoinduced effects, which opens a new perspective for the development of new scanning probe modalities exploiting ultrastrong opto-mechanical coupling effects in tip-sample cavities.

17.
Nano Lett ; 16(5): 3029-35, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27096877

ABSTRACT

Many phase transitions in correlated matter exhibit spatial inhomogeneities with expected yet unexplored effects on the associated ultrafast dynamics. Here we demonstrate the combination of ultrafast nondegenerate pump-probe spectroscopy with far from equilibrium excitation, and scattering scanning near-field optical microscopy (s-SNOM) for ultrafast nanoimaging. In a femtosecond near-field near-IR (NIR) pump and mid-IR (MIR) probe study, we investigate the photoinduced insulator-to-metal (IMT) transition in nominally homogeneous VO2 microcrystals. With pump fluences as high as 5 mJ/cm(2), we can reach three distinct excitation regimes. We observe a spatial heterogeneity on ∼50-100 nm length scales in the fluence-dependent IMT dynamics ranging from <100 fs to ∼1 ps. These results suggest a high sensitivity of the IMT with respect to small local variations in strain, doping, or defects that are difficult to discern microscopically. We provide a perspective with the distinct requirements and considerations of ultrafast spatiotemporal nanoimaging of phase transitions in quantum materials.

18.
Opt Express ; 23(25): 32063-74, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26698997

ABSTRACT

Infrared vibrational nano-spectroscopy based on scattering scanning near-field optical microscopy (s-SNOM) provides intrinsic chemical specificity with nanometer spatial resolution. Here we use incoherent infrared radiation from a 1400 K thermal blackbody emitter for broadband infrared (IR) nano-spectroscopy. With optimized interferometric heterodyne signal amplification we achieve few-monolayer sensitivity in phonon polariton spectroscopy and attomolar molecular vibrational spectroscopy. Near-field localization and nanoscale spatial resolution is demonstrated in imaging flakes of hexagonal boron nitride (hBN) and determination of its phonon polariton dispersion relation. The signal-to-noise ratio calculations and analysis for different samples and illumination sources provide a reference for irradiance requirements and the attainable near-field signal levels in s-SNOM in general. The use of a thermal emitter as an IR source thus opens s-SNOM for routine chemical FTIR nano-spectroscopy.

19.
Nat Commun ; 6: 6849, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25897640

ABSTRACT

The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging. The timescales of the ultrafast IMT vary from 40±8 fs, that is, shorter than a suggested phonon bottleneck, to 200±20 fs, uncorrelated with crystal size, transition temperature and initial insulating structural phase, with average value similar to results from polycrystalline thin-film studies. In combination with the observed sensitive variations in the thermal nanodomain IMT behaviour, this suggests that the IMT is highly susceptible to local changes in, for example, doping, defects and strain. Our results suggest an electronic mechanism dominating the photoinduced IMT, but also highlight the difficulty to deduce microscopic mechanisms when the true intrinsic material response is yet unclear.

20.
Phys Rev Lett ; 113(5): 055502, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25126927

ABSTRACT

The surface plasmon polaritons (SPPs) of graphene reflect the microscopic spatial variations of underlying electronic structure and dynamics. Here, we excite and image the graphene SPP response in phase and amplitude by near-field interferometry. We develop an analytic cavity model that can self-consistently describe the SPP response function for edge, grain boundary, and defect SPP reflection and scattering. The derived SPP wave vector, damping, and carrier mobility agree with the results from more complex models. Spatial variations in the Fermi level and associated variations in dopant concentration reveal a nanoscale spatial inhomogeneity in the reduced conductivity at internal boundaries. The additional SPP phase information thus opens a new degree of freedom for spatial and spectral graphene SPP tuning and modulation for optoelectronics applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...