Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Insect Physiol ; 155: 104635, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38609007

ABSTRACT

Honey bees are globally important pollinators, key to many aspects of ecosystem function and agricultural production. However they are facing an increasing array of stress factors. These stressors include exposure to pathogens and pesticides, agricultural intensification, and changes in climate, and likely contribute to colony dysfunction and colony losses. Here we use temperature-controlled glasshouse experiments to investigate the impact of a field-realistic temperature-range on honey bee colonies, including temperatures based on projections for near-future local conditions. We show that increased temperatures have a significant impact on honey bee worker activity, with increased worker movement in and out of colonies, particularly over 30 °C. In addition, increased glasshouse temperatures led to significantly higher brood (egg, larval and pupal cells) humidity. Finally, temperature had a more severe impact at the later end of the experiment than at the start (on worker movement and brood conditions), suggesting that colonies under stress (either due to exposure to thermal stress or glasshouse confinement) have more difficulty in manging thermoregulation. These results indicate the potential impact of higher temperatures on the healthy functioning of these important pollinators.

2.
J Agric Food Chem ; 71(34): 12657-12667, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37584230

ABSTRACT

Determining the levels of agrochemicals, such as pesticides, that honey bees are exposed to is critical for understanding what stress factors may be contributing to colony declines. Although several pesticide detection methods are available for honey, limited work has been conducted to adapt these methods for pollen. Here, we address this gap by modifying the Dutch mini-Luke extraction method (NL method) for pesticide analysis in honey and pollen from throughout the island of Ireland. The NL method was modified to enable detection in small-sized samples and validated for both pollen and honey matrices. The modified NL method combined with liquid and gas chromatography-tandem mass spectrometry gave consistent results in terms of accuracy and precision measured by recovery experiments and was successfully applied in the analysis of a range of pesticide residues. The modified NL method developed here provides a key tool for detecting pesticides in honey bee colony resources and the environment more broadly.


Subject(s)
Pesticide Residues , Pesticides , Bees , Animals , Pesticides/analysis , Tandem Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry , Pesticide Residues/analysis , Chromatography, Liquid/methods , Pollen/chemistry
3.
Bioscience ; 72(11): 1118-1130, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36325105

ABSTRACT

Wallacea-the meeting point between the Asian and Australian fauna-is one of the world's largest centers of endemism. Twenty-three million years of complex geological history have given rise to a living laboratory for the study of evolution and biodiversity, highly vulnerable to anthropogenic pressures. In the present article, we review the historic and contemporary processes shaping Wallacea's biodiversity and explore ways to conserve its unique ecosystems. Although remoteness has spared many Wallacean islands from the severe overexploitation that characterizes many tropical regions, industrial-scale expansion of agriculture, mining, aquaculture and fisheries is damaging terrestrial and aquatic ecosystems, denuding endemics from communities, and threatening a long-term legacy of impoverished human populations. An impending biodiversity catastrophe demands collaborative actions to improve community-based management, minimize environmental impacts, monitor threatened species, and reduce wildlife trade. Securing a positive future for Wallacea's imperiled ecosystems requires a fundamental shift away from managing marine and terrestrial realms independently.

SELECTION OF CITATIONS
SEARCH DETAIL
...