Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Prev Vet Med ; 224: 106129, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325115

ABSTRACT

In Ireland, the interferon-gamma (IFN-γ) assay is routinely used as an ancillary test interpreted in parallel with the single intradermal comparative tuberculin test (SICTT) to maximize the detection of bovine tuberculosis (bTB) infected animals. Up until 2018, a positive test result was recorded in the IFN-γ ELISA assay following whole blood stimulation with purified protein derivative (PPD)-bovine (B), PPD-avian (A) and nil sample (N), using the interpretation criteria, B-N > 50 optical density units (OD), B > 100 and B-A > 0. Following a review of available data, the threshold of the B-A component changed to B-A > 80. As predicting the impact of changing the cut-off thresholds for the IFN-γ test de novo is challenging, the aims of this study were to follow animals that initially tested negative using the new IFN-γ assay interpretation criteria and investigate their future risk of disclosure with bTB, with a focus on animals that otherwise would have been removed when using the older interpretation criteria (0 < B-A ≤ 80). Enrolled animals (n = 28,669 cattle from 527 herds) were followed up for two years (2019-2021), or to point of bTB detection or death. At the end of follow-up, 1151 (4.0%) of enrolled animals were bTB cases. The majority of these cases were diagnosed using SICTT (80.5%). The cumulative number of positive animals that would have been removed if the old cut-off (0 < B-A ≤ 80) was used amounted to 1680 cattle (5.9% of the enrolled cohort). Of these, 127 (7.5%) were diagnosed with bTB during follow-up. In contrast, 1024 of the 1151 cattle which subsequently tested positive during the study period following a negative IFN-γ test would not have been identified with the old or new IFN-γ cut-off criteria. Survival analysis showed that animals that would have been removed under the old interpretation criteria were at increased risk of a positive diagnosis with bTB during follow-up compared to other test negative animals. A newly developed risk prediction model (using a Cox proportional hazard model) showed that age, animal number of SICTT tests, number of inconclusive SICTT tests, B-A (IFN-γ assay), B-N (IFN-γ assay), animals from store herds and the percentage of the rest of the herd that were positive during the breakdown were statistically significantly associated with bTB detection. However, inclusion of the IFN-γ OD variables did not show added value in terms of prediction performance of the model.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Animals , Cattle , Interferon-gamma , Ireland/epidemiology , Mycobacterium bovis/physiology , Tuberculin , Tuberculin Test/veterinary , Tuberculosis, Bovine/diagnosis , Tuberculosis, Bovine/epidemiology
2.
Nutrients ; 15(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140360

ABSTRACT

This narrative review explores the impact of sleep and nutrition on injury risk in adolescent athletes. Sleep is viewed as essential to the recuperation process and is distinguished as an active participant in recovery through its involvement in growth, repair, regeneration, and immunity. Furthermore, the literature has shown that the sleep of athletes impacts elements of athletic performance including both physical and cognitive performance, recovery, injury risk, and mental well-being. For sleep to have a restorative effect on the body, it must meet an individual's sleep needs whilst also lasting for an adequate duration and being of adequate quality, which is age-dependent. The literature has suggested that athletes have increased sleep needs compared to those of the general population and thus the standard recommendations may not be sufficient for athletic populations. Therefore, a more individualised approach accounting for overall sleep health may be more appropriate for addressing sleep needs in individuals including athletes. The literature has demonstrated that adolescent athletes achieve, on average, ~6.3 h of sleep, demonstrating a discrepancy between sleep recommendations (8-10 h) and actual sleep achieved. Sleep-wake cycles undergo development during adolescence whereby adaptation occurs in sleep regulation during this phase. These adaptations increase sleep pressure tolerance and are driven by the maturation of physiological, psychological, and cognitive functioning along with delays in circadian rhythmicity, thus creating an environment for inadequate sleep during adolescence. As such, the adolescent period is a phase of rapid growth and maturation that presents multiple challenges to both sleep and nutrition; consequently, this places a significant burden on an adolescent athletes' ability to recover, thus increasing the likelihood of injury. Therefore, this article aims to provide a comprehensive review of the available literature on the importance of sleep and nutrition interactions in injury risk in adolescent athletes. Furthermore, it provides foundations for informing further investigations exploring the relation of sleep and nutrition interactions to recovery during adolescence.


Subject(s)
Athletic Performance , Sleep , Humans , Adolescent , Sleep/physiology , Circadian Rhythm/physiology , Athletes/psychology , Nutritional Status , Athletic Performance/physiology
3.
Anim Genet ; 54(2): 93-103, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36504456

ABSTRACT

Swyer syndrome is where an individual has the karyotype of a typical male yet is phenotypically a female. The lack of a (functional) SRY gene located on the Y-chromosome is implicated in some cases of the Swyer syndrome, although many Swyer individuals with an apparently fully functional SRY gene have also been documented. The present study undertook whole genome sequence analyses of eight cattle with suspected Swyer syndrome and compared their genome to that of both a control male and female. Sequence analyses coupled with female phenotypes confirmed that all eight individuals had the 60,XY sex reversal Swyer syndrome. Seven of the eight Swyer syndrome individuals had a deletion on the Y chromosome encompassing the SRY gene (i.e., SRY-). The eighth individual had no obvious mutation in the SRY gene (SRY+) or indeed in any reported gene associated with sex reversal in mammals; a necropsy was performed on this individual. No testicles were detected during the necropsy. Histological examination of the reproductive tract revealed an immature uterine body and horns with inactive glandular tissue of normal histological appearance; both gonads were elongated, a characteristic of most reported cases of Swyer in mammals. The flanking sequence of 11 single nucleotide polymorphisms within 10 kb of the SRY gene are provided to help diagnose some cases of Swyer syndrome. These single nucleotide polymorphisms will not, however, detect all cases of Swyer syndrome since, as evidenced from the present study (and other studies), some individuals with the Swyer condition still contain the SRY gene (i.e., SRY+).


Subject(s)
Cattle Diseases , Gonadal Dysgenesis, 46,XY , Male , Cattle/genetics , Female , Animals , Gonadal Dysgenesis, 46,XY/genetics , Mutation , Genes, sry , Y Chromosome/genetics , Testis , Sex-Determining Region Y Protein/genetics , Mammals/genetics , Cattle Diseases/genetics
4.
Vet J ; 209: 32-9, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26831164

ABSTRACT

Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (paratuberculosis), a chronic wasting disease in cattle with important welfare, economic and potential public health implications. Current tests are unable to recognise all stages of the disease, which makes it difficult to diagnose and control. This review explores emerging diagnostic techniques that could complement and enhance the diagnosis of MAP infection, including bacteriophage analysis, new MAP-specific antigens, host protein expression in response to infection, transcriptomic studies, analysis of microRNAs and investigation of the gastrointestinal microbiome. It emphasises the inherent challenges of diagnosing bovine Johne's disease and investigates novel areas which may have the potential both to advance our understanding of the immunopathology of MAP infection and to augment current diagnostic tests.


Subject(s)
Cattle Diseases/diagnosis , Mycobacterium avium subsp. paratuberculosis/isolation & purification , Mycobacterium avium subsp. paratuberculosis/physiology , Paratuberculosis/diagnosis , Animals , Cattle , Cattle Diseases/microbiology , Paratuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...