Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Oecologia ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689180

ABSTRACT

Parasites represent a ubiquitous threat for most organisms, requiring potential hosts to invest in a range of strategies to defend against infection-these include both behavioural and physiological mechanisms. Avoidance is an essential first line of defence, but this behaviour may show a trade-off with host investment in physiological immunity. Importantly, while environmental stressors can lead to elevated hormones in vertebrates, such as glucocorticoids, that can reduce physiological immunity in certain contexts, behavioural defences may also be compromised. Here, we investigate anti-parasite behaviour and immune responses against a trematode (flatworm) parasite by larval amphibians (tadpoles) exposed or not to a simulated general stressor in the form of exogenous corticosterone. Tadpoles that were highly active in the presence of the trematode infectious stage (cercariae) had lower infection loads, and parasite loads from tadpoles treated only with dechlorinated water were significantly lower than those exposed to corticosterone or the solvent control. However, treatment did not affect immunity as measured through white blood-cell profiles, and there was no relationship between the latter and anti-parasite behaviour. Our results suggest that a broad range of stressors could increase host susceptibility to infection through altered anti-parasite behaviours if they elevate endogenous glucocorticoids, irrespective of physiological immunity effects. How hosts defend themselves against parasitism in the context of multiple challenges represents an important topic for future research, particularly as the risk posed by infectious diseases is predicted to increase in response to ongoing environmental change.

2.
Dis Aquat Organ ; 151: 129-133, 2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36300766

ABSTRACT

Most bopyrid isopod parasites, which are crustaceans themselves, settle in the branchial chamber of decapod crustaceans and feed on host haemolymph. Here we report the results of an experiment on the common prawn Palaemon serratus and the parasite Bopyrus squillarum. Infected and uninfected prawns were stimulated with pokes of a plastic rod until an escape response was triggered; the number of pokes was recorded as an indicator of prawn responsiveness, whereas the time spent moving following stimulation was used as an indicator of prawn activity. Our results show that bopyrid infection affects both prawn responsiveness and activity, with infected prawns requiring more pokes to move, and moving for less time compared to uninfected prawns. In nature, such behavioural changes may impact defence mechanisms and survival of infected prawns. This could contribute to decreases in P. serratus abundance, thereby affecting the coastal ecosystems home to this species and the fisheries reliant on it, such as the Irish shrimp fishery.


Subject(s)
Decapoda , Isopoda , Palaemonidae , Parasites , Animals , Isopoda/physiology , Ecosystem , Plastics
3.
Sci Total Environ ; 800: 149402, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34399351

ABSTRACT

Glucocorticoid hormones (GCs) help vertebrates maintain homeostasis during and following challenging events. Short-term elevations in GC levels are necessary for survival, whereas longer-term changes can lead to reduced reproductive output and immunosuppression. Persistent environmental contaminants (ECs) are widespread globally. Experimental exposure of individuals to ECs is associated with varying GC responses, within, and across, species and contaminants. Individuals exposed to ECs over long durations are expected to have prolonged GC elevations, which likely affect their health. We conducted a meta-analysis to test for a relationship between fish GC levels and experimental exposure to ECs, and to explore potential moderators, including duration of exposure, that could help explain the variation in effect sizes within and between studies. We report almost exclusively on cortisol responses of teleost fish to ECs. Although there was much variation in effect sizes, captive-bred fish exposed to ECs had baseline GC levels 1.5× higher than unexposed fish, and fish exposed to pharmaceuticals (estradiols and stimulants being mainly considered) had baseline GC levels approximately 2.5× higher than unexposed fish. We found that captive-bred and wild-caught fish did not differ in GC levels after exposure to the same classes of ECs - studies on captive bred fish may thus enable inferences about GC responses to ECs for wild species. Furthermore, effect sizes did not differ between baseline and challenge-induced GC measures. In different analyses, duration of exposure was negatively correlated to effect size, suggesting that the GC response may acclimate after chronic exposure to some ECs which could potentially alter the GC response of EC-exposed fish to novel stressors. Future studies should explore the effect of multiple stressors on the fish GC response and perform tests on a broader array of contaminant types and vertebrate classes.


Subject(s)
Fishes , Hydrocortisone , Animals , Glucocorticoids , Humans , Vertebrates
4.
Parasite ; 28: 59, 2021.
Article in English | MEDLINE | ID: mdl-34319230

ABSTRACT

The biodiversity of freshwater ecosystems globally still leaves much to be discovered, not least in the trematode parasite fauna they support. Echinostome trematode parasites have complex, multiple-host life-cycles, often involving migratory bird definitive hosts, thus leading to widespread distributions. Here, we examined the echinostome diversity in freshwater ecosystems at high latitude locations in Iceland, Finland, Ireland and Alaska (USA). We report 14 echinostome species identified morphologically and molecularly from analyses of nad1 and 28S rDNA sequence data. We found echinostomes parasitising snails of 11 species from the families Lymnaeidae, Planorbidae, Physidae and Valvatidae. The number of echinostome species in different hosts did not vary greatly and ranged from one to three species. Of these 14 trematode species, we discovered four species (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, and Echinostomatidae gen. sp.) as novel in Europe; we provide descriptions for the newly recorded species and those not previously associated with DNA sequences. Two species from Iceland (Neopetasiger islandicus and Echinoparyphium sp. 2) were recorded in both Iceland and North America. All species found in Ireland are new records for this country. Via an integrative taxonomic approach taken, both morphological and molecular data are provided for comparison with future studies to elucidate many of the unknown parasite life cycles and transmission routes. Our reports of species distributions spanning Europe and North America highlight the need for parasite biodiversity assessments across large geographical areas.


TITLE: Diversité des Échinostomes (Digenea, Echinostomatidae) chez leurs hôtes mollusques aux latitudes élevées. ABSTRACT: La biodiversité des écosystèmes d'eau douce à l'échelle mondiale laisse encore beaucoup à découvrir, notamment dans la faune parasitaire des trématodes qu'ils abritent. Les parasites trématodes Échinostomes ont des cycles de vie complexes à hôtes multiples impliquant souvent des oiseaux migrateurs comme hôtes définitifs, conduisant ainsi à des distributions étendues. Ici, nous avons examiné la diversité des échinostomes dans les écosystèmes d'eau douce à des latitudes élevées en Islande, Finlande, Irlande et en Alaska (États-Unis). Nous rapportons de séquences de nad1 et d'ADNr 28S morphologiquement et moléculairement à partir d'analyses de données de séquence d'ADNr nad1 et 28S. Nous avons trouvé des échinostomes parasitant les mollusques de 11 espèces des familles Lymnaeidae, Planorbidae, Physidae et Valvatidae. Le nombre d'espèces d'échinostomes dans différents hôtes ne variait pas beaucoup et allait d'une à trois espèces. Sur ces 14 espèces de trématodes, nous avons découvert quatre espèces (Echinoparyphium sp. 1, Echinoparyphium sp. 2, Neopetasiger sp. 5, Echinostomatidae gen. sp.) comme nouvelles pour l'Europe; nous fournissons des descriptions pour les espèces nouvellement signalées et celles qui n'étaient pas précédemment associées à des séquences d'ADN. Deux espèces d'Islande (Neopetasiger islandicus et Echinoparyphium sp. 2) ont été signalées en Islande et en Amérique du Nord. Toutes les espèces trouvées en Irlande sont de nouveaux signalements pour ce pays. Grâce à une approche taxonomique intégrative, des données morphologiques et moléculaires sont fournies à des fins de comparaison avec des études futures afin d'élucider les nombreux cycles de vie et voies de transmission des parasites, qui sont inconnus. Nos données sur la répartition des espèces en Europe et en Amérique du Nord soulignent la nécessité d'évaluer la biodiversité des parasites dans de vastes zones géographiques.


Subject(s)
Echinostomatidae , Trematoda , Animals , Echinostomatidae/genetics , Ecosystem , Europe , Humans , North America , Snails
5.
J Anim Ecol ; 89(2): 519-529, 2020 02.
Article in English | MEDLINE | ID: mdl-31622499

ABSTRACT

Parasites and pathogens (hereafter parasites) commonly challenge organisms, but the extent to which their infections are physiologically stressful to hosts remains unclear. Importantly, vertebrate hormones, glucocorticoids (GCs), have been reported to increase, decrease or show no alterations stemming from infections, challenging the generality of parasite-associated GC responses and motivating a search for important moderator variables. We undertook the first meta-analysis of changes in vertebrate GCs following experimental infection with parasites, extracting 146 effect sizes from 42 studies involving 32 host and 32 parasite species to test for general patterns of GC following infection, as well as the influence of moderators. Overall, infection increased GCs relative to preliminary or control levels when the single largest effect sizes from repeated measures studies were examined, suggesting that parasites of vertebrate hosts can be thought of generally as physiological stressors by elevating GCs. When all effect sizes were included along with the moderator of sampling time post-infection (tPI), parasite infection still had a positive effect on host GCs. However, the strength of that effect did not relate consistently to tPI, illustrating temporal differences in GC changes during the course of infection among parasite taxa (e.g. arthropod vs. bacterial infections). Other moderator variables examined did not influence GC responses. Studies broadening the range of host and parasite taxa, and sampling during critical time windows, would aid in our understanding of variation in the host stress response and its consequences for fitness of both vertebrate hosts and their parasites.


Subject(s)
Parasites , Parasitic Diseases , Animals , Glucocorticoids , Host-Parasite Interactions , Vertebrates
6.
Ecology ; 97(12): 3293-3299, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27912008

ABSTRACT

Meta-analysis is the gold standard for synthesis in ecology and evolution. Together with estimating overall effect magnitudes, meta-analyses estimate differences between effect sizes via heterogeneity statistics. It is widely hypothesized that heterogeneity will be present in ecological/evolutionary meta-analyses due to the system-specific nature of biological phenomena. Despite driving recommended best practices, the generality of heterogeneity in ecological data has never been systematically reviewed. We reviewed 700 studies, finding 325 that used formal meta-analysis, of which total heterogeneity was reported in fewer than 40%. We used second-order meta-analysis to collate heterogeneity statistics from 86 studies. Our analysis revealed that the median and mean heterogeneity, expressed as I2 , are 84.67% and 91.69%, respectively. These estimates are well above "high" heterogeneity (i.e., 75%), based on widely adopted benchmarks. We encourage reporting heterogeneity in the forms of I2 and the estimated variance components (e.g., τ2 ) as standard practice. These statistics provide vital insights in to the degree to which effect sizes vary, and provide the statistical support for the exploration of predictors of effect-size magnitude. Along with standard meta-regression techniques that fit moderator variables, multi-level models now allow partitioning of heterogeneity among correlated (e.g., phylogenetic) structures that exist within data.


Subject(s)
Biological Evolution , Ecology/methods , Meta-Analysis as Topic , Bias , Data Interpretation, Statistical , Models, Statistical , Research Design
7.
Parasitol Int ; 64(6): 632-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26344863

ABSTRACT

When hosts experience environmental stress, the quantity and quality of resources they provide for parasites may be diminished, and host longevity may be decreased. Under stress, parasites may adopt alternative strategies to avoid fitness reductions. Trematode parasites typically have complex life cycles, involving asexual reproduction in a gastropod first intermediate host. A rare phenomenon, briefly mentioned in the literature, and termed 'precocious encystment' involves the next stage in the parasites' life cycle (metacercarial cyst) forming within the preceding stage (redia), while still inside the snail. In the trematode Parorchis sp. NZ using rocky shore snails exposed to long periods outside water, we hypothesised that this might be an adaptive strategy against desiccation, preventing parasite emergence from the snail. To test this, we first investigated the effect of prolonged desiccation on the survival of two species of high intertidal snails. Secondly, we measured the reproductive output (cercarial production) of the parasite under wet and dry conditions. Finally, we quantified the influence of desiccation stress on the occurrence of precocious encystment. Snail mortality was higher under dry conditions, indicating stress, and it was somewhat exacerbated for infected snails. Parasite reproductive output differed between wet and dry conditions, with parasites of snails kept in dry conditions producing more cercariae when placed in water. Little variation was observed in the occurrence of precocious encystment, although some subtle patterns emerged. Given the stresses associated with living in high intertidal environments, we discuss precocious encystment as a possible stress response in this trematode parasite.


Subject(s)
Desiccation , Metacercariae/growth & development , Snails/parasitology , Stress, Physiological/physiology , Trematoda/growth & development , Animals , Cercaria/growth & development , Environment , Host-Parasite Interactions , Snails/physiology , Trematode Infections/parasitology
8.
Parasitol Res ; 114(6): 2381-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25866083

ABSTRACT

We investigated for the first time the digenean parasites of Austrolittorina unifasciata Gray (Gastropoda: Littorinidae), a periwinkle snail inhabiting the rocky shores of Australia. Here we present detailed morphological descriptions and molecular data (sequences for the mitochondrial cox1 and the nuclear 28S rRNA gene) for the cercariae and intramolluscan stages of the digenean parasites found. Five species, one each of the families Notocotylidae Lühe, 1909, Gorgocephalidae Manter, 1966 and Philophthalmidae Looss, 1899, and two of the family Renicolidae Dollfus, 1939, were recorded and characterised molecularly. Phylogenetic analyses at the superfamily level provided evidence for the familial and generic affiliation of the species and their relationships with congeners. This study is the first to provide data on the life cycle of a species of the family Gorgocephalidae, a parasite of kyphosid fish for which only adult stages had, thus far, been described. The relatively high prevalence of this species allowed mapping of the cox1 haplotype distribution of Gorgocephalus sp. Aus along the southern coast of New South Wales.


Subject(s)
Snails/parasitology , Trematoda/classification , Trematoda/genetics , Animals , Australia , Base Sequence , Cercaria/genetics , Host-Parasite Interactions , Phylogeny
9.
Syst Parasitol ; 89(2): 133-52, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25204600

ABSTRACT

Littorinid snails are one particular group of gastropods identified as important intermediate hosts for a wide range of digenean parasite species, at least throughout the Northern Hemisphere. However nothing is known of trematode species infecting these snails in the Southern Hemisphere. This study is the first attempt at cataloguing the digenean parasites infecting littorinids in New Zealand. Examination of over 5,000 individuals of two species of the genus Austrolittorina Rosewater, A. cincta Quoy & Gaimard and A. antipodum Philippi, from intertidal rocky shores, revealed infections with four digenean species representative of a diverse range of families: Philophthalmidae Looss, 1899, Notocotylidae Lühe, 1909, Renicolidae Dollfus, 1939 and Microphallidae Ward, 1901. This paper provides detailed morphological descriptions of the cercariae and intramolluscan stages of these parasites. Furthermore, partial sequences of the 28S rRNA gene and the mitochondrial gene cytochrome c oxidase subunit 1 (cox1) for varying numbers of isolates of each species were obtained. Phylogenetic analyses were carried out at the superfamily level and along with the morphological data were used to infer the generic affiliation of the species.


Subject(s)
Phylogeny , Snails/parasitology , Trematoda/classification , Animals , Electron Transport Complex IV/genetics , Molecular Sequence Data , New Zealand , RNA, Ribosomal, 28S/genetics , Species Specificity , Trematoda/anatomy & histology , Trematoda/genetics
10.
Biol Rev Camb Philos Soc ; 89(1): 123-34, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23782597

ABSTRACT

Although a small set of external factors account for much of the spatial variation in plant and animal diversity, the search continues for general drivers of variation in parasite species richness among host species. Qualitative reviews of existing evidence suggest idiosyncrasies and inconsistent predictive power for all proposed determinants of parasite richness. Here, we provide the first quantitative synthesis of the evidence using a meta-analysis of 62 original studies testing the relationship between parasite richness across animal, plant and fungal hosts, and each of its four most widely used presumed predictors: host body size, host geographical range size, host population density, and latitude. We uncover three universal predictors of parasite richness across host species, namely host body size, geographical range size and population density, applicable regardless of the taxa considered and independently of most aspects of study design. A proper match in the primary studies between the focal predictor and both the spatial scale of study and the level at which parasite species richness was quantified (i.e. within host populations or tallied across a host species' entire range) also affected the magnitude of effect sizes. By contrast, except for a couple of indicative trends in subsets of the full dataset, there was no strong evidence for an effect of latitude on parasite species richness; where found, this effect ran counter to the general latitude gradient in diversity, with parasite species richness tending to be higher further from the equator. Finally, the meta-analysis also revealed a negative relationship between the magnitude of effect sizes and the year of publication of original studies (i.e. a time-lag bias). This temporal bias may be due to the increasing use of phylogenetic correction in comparative analyses of parasite richness over time, as this correction yields more conservative effect sizes. Overall, these findings point to common underlying processes of parasite diversification fundamentally different from those controlling the diversity of free-living organisms.


Subject(s)
Biodiversity , Fungi , Parasites/classification , Parasitic Diseases, Animal/parasitology , Plants/parasitology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...