Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Cell ; 186(6): 1127-1143.e18, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931243

ABSTRACT

CD8+ T cell responses are critical for anti-tumor immunity. While extensively profiled in the tumor microenvironment, recent studies in mice identified responses in lymph nodes (LNs) as essential; however, the role of LNs in human cancer patients remains unknown. We examined CD8+ T cells in human head and neck squamous cell carcinomas, regional LNs, and blood using mass cytometry, single-cell genomics, and multiplexed ion beam imaging. We identified progenitor exhausted CD8+ T cells (Tpex) that were abundant in uninvolved LN and clonally related to terminally exhausted cells in the tumor. After anti-PD-L1 immunotherapy, Tpex in uninvolved LNs reduced in frequency but localized near dendritic cells and proliferating intermediate-exhausted CD8+ T cells (Tex-int), consistent with activation and differentiation. LN responses coincided with increased circulating Tex-int. In metastatic LNs, these response hallmarks were impaired, with immunosuppressive cellular niches. Our results identify important roles for LNs in anti-tumor immune responses in humans.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Humans , Animals , Mice , Lymph Nodes , Neoplasms/therapy , Neoplasms/pathology , Immunotherapy/methods , Tumor Microenvironment
2.
Immunity ; 55(3): 512-526.e9, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263569

ABSTRACT

Dual blockade of the PD-1 and TIGIT coinhibitory receptors on T cells shows promising early results in cancer patients. Here, we studied the mechanisms whereby PD-1 and/or TIGIT blockade modulate anti-tumor CD8+ T cells. Although PD-1 and TIGIT are thought to regulate different costimulatory receptors (CD28 and CD226), effectiveness of PD-1 or TIGIT inhibition in preclinical tumor models was reduced in the absence of CD226. CD226 expression associated with clinical benefit in patients with non-small cell lung carcinoma (NSCLC) treated with anti-PD-L1 antibody atezolizumab. CD226 and CD28 were co-expressed on NSCLC infiltrating CD8+ T cells poised for expansion. Mechanistically, PD-1 inhibited phosphorylation of both CD226 and CD28 via its ITIM-containing intracellular domain (ICD); TIGIT's ICD was dispensable, with TIGIT restricting CD226 co-stimulation by blocking interaction with their common ligand PVR (CD155). Thus, full restoration of CD226 signaling, and optimal anti-tumor CD8+ T cell responses, requires blockade of TIGIT and PD-1, providing a mechanistic rationale for combinatorial targeting in the clinic.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Antigens, Differentiation, T-Lymphocyte/metabolism , CD28 Antigens/metabolism , Humans , Neoplasms/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Immunologic/metabolism
3.
Cancer Cell ; 40(3): 289-300.e4, 2022 03 14.
Article in English | MEDLINE | ID: mdl-35216676

ABSTRACT

Inhibitors of the programmed cell death-1 (PD-1/PD-L1) signaling axis are approved to treat non-small cell lung cancer (NSCLC) patients, based on their significant overall survival (OS) benefit. Using transcriptomic analysis of 891 NSCLC tumors from patients treated with either the PD-L1 inhibitor atezolizumab or chemotherapy from two large randomized clinical trials, we find a significant B cell association with extended OS with PD-L1 blockade, independent of CD8+ T cell signals. We then derive gene signatures corresponding to the dominant B cell subsets present in NSCLC from single-cell RNA sequencing (RNA-seq) data. Importantly, we find increased plasma cell signatures to be predictive of OS in patients treated with atezolizumab, but not chemotherapy. B and plasma cells are also associated with the presence of tertiary lymphoid structures and organized lymphoid aggregates. Our results suggest an important contribution of B and plasma cells to the efficacy of PD-L1 blockade in NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , B7-H1 Antigen/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Immune Checkpoint Inhibitors , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Plasma Cells/pathology
4.
Nat Med ; 28(4): 766-779, 2022 04.
Article in English | MEDLINE | ID: mdl-35190725

ABSTRACT

B cells, which are critical for intestinal homeostasis, remain understudied in ulcerative colitis (UC). In this study, we recruited three cohorts of patients with UC (primary cohort, n = 145; validation cohort 1, n = 664; and validation cohort 2, n = 143) to comprehensively define the landscape of B cells during UC-associated intestinal inflammation. Using single-cell RNA sequencing, single-cell IgH gene sequencing and protein-level validation, we mapped the compositional, transcriptional and clonotypic landscape of mucosal and circulating B cells. We found major perturbations within the mucosal B cell compartment, including an expansion of naive B cells and IgG+ plasma cells with curtailed diversity and maturation. Furthermore, we isolated an auto-reactive plasma cell clone targeting integrin αvß6 from inflamed UC intestines. We also identified a subset of intestinal CXCL13-expressing TFH-like T peripheral helper cells that were associated with the pathogenic B cell response. Finally, across all three cohorts, we confirmed that changes in intestinal humoral immunity are reflected in circulation by the expansion of gut-homing plasmablasts that correlates with disease activity and predicts disease complications. Our data demonstrate a highly dysregulated B cell response in UC and highlight a potential role of B cells in disease pathogenesis.


Subject(s)
Colitis, Ulcerative , Plasma Cells , B-Lymphocytes , Colitis, Ulcerative/genetics , Humans , Intestinal Mucosa/pathology , Lymphocyte Count , T-Lymphocytes, Helper-Inducer
5.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: mdl-33827905

ABSTRACT

BACKGROUND: CD8+ tissue-resident memory T (TRM) cells, marked by CD103 (ITGAE) expression, are thought to actively suppress cancer progression, leading to the hypothesis that their presence in tumors may predict response to immunotherapy. METHODS: Here, we test this by combining high-dimensional single-cell modalities with bulk tumor transcriptomics from 1868 patients enrolled in lung and bladder cancer clinical trials of atezolizumab (anti-programmed cell death ligand 1 (PD-L1)). RESULTS: ITGAE was identified as the most significantly upregulated gene in inflamed tumors. Tumor CD103+ CD8+ TRM cells exhibited a complex phenotype defined by the expression of checkpoint regulators, cytotoxic proteins, and increased clonal expansion. CONCLUSIONS: Our analyses indeed demonstrate that the presence of CD103+ CD8+ TRM cells, quantified by tracking intratumoral CD103 expression, can predict treatment outcome, suggesting that patients who respond to PD-1/PD-L1 blockade are those who exhibit an ongoing antitumor T-cell response.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD/genetics , B7-H1 Antigen/antagonists & inhibitors , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/immunology , Immune Checkpoint Inhibitors/therapeutic use , Integrin alpha Chains/genetics , Lung Neoplasms/drug therapy , Lymphocytes, Tumor-Infiltrating/immunology , Urinary Bladder Neoplasms/drug therapy , Antibodies, Monoclonal, Humanized/adverse effects , B7-H1 Antigen/immunology , Clinical Trials, Phase II as Topic , Clinical Trials, Phase III as Topic , Databases, Genetic , Gene Expression Profiling , Humans , Immune Checkpoint Inhibitors/adverse effects , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Phenotype , Randomized Controlled Trials as Topic , Time Factors , Treatment Outcome , Tumor Microenvironment , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/immunology
6.
Nature ; 579(7798): 274-278, 2020 03.
Article in English | MEDLINE | ID: mdl-32103181

ABSTRACT

Despite the resounding clinical success in cancer treatment of antibodies that block the interaction of PD1 with its ligand PDL11, the mechanisms involved remain unknown. A major limitation to understanding the origin and fate of T cells in tumour immunity is the lack of quantitative information on the distribution of individual clonotypes of T cells in patients with cancer. Here, by performing deep single-cell sequencing of RNA and T cell receptors in patients with different types of cancer, we survey the profiles of various populations of T cells and T cell receptors in tumours, normal adjacent tissue, and peripheral blood. We find clear evidence of clonotypic expansion of effector-like T cells not only within the tumour but also in normal adjacent tissue. Patients with gene signatures of such clonotypic expansion respond best to anti-PDL1 therapy. Notably, expanded clonotypes found in the tumour and normal adjacent tissue can also typically be detected in peripheral blood, which suggests a convenient approach to patient identification. Analyses of our data together with several external datasets suggest that intratumoural T cells, especially in responsive patients, are replenished with fresh, non-exhausted replacement cells from sites outside the tumour, suggesting continued activity of the cancer immunity cycle in these patients, the acceleration of which may be associated with clinical response.


Subject(s)
Lymphocytes, Tumor-Infiltrating/cytology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/pathology , Pharmacogenomic Variants , Receptors, Antigen, T-Cell/genetics , T-Lymphocytes/cytology , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents/therapeutic use , Clone Cells , Humans , Neoplasms/drug therapy , Neoplasms/immunology , T-Lymphocytes/metabolism , Transcriptome
7.
J Immunother Cancer ; 7(1): 249, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31511069

ABSTRACT

BACKGROUND: There is strong evidence that immunotherapy-mediated tumor rejection can be driven by tumor-specific CD8+ T cells reinvigorated to recognize neoantigens derived from tumor somatic mutations. Thus, the frequencies or characteristics of tumor-reactive, mutation-specific CD8+ T cells could be used as biomarkers of an anti-tumor response. However, such neoantigen-specific T cells are difficult to reliably identify due to their low frequency in peripheral blood and wide range of potential epitope specificities. METHODS: Peripheral blood mononuclear cells (PBMC) from 14 non-small cell lung cancer (NSCLC) patients were collected pre- and post-treatment with the anti-PD-L1 antibody atezolizumab. Using whole exome sequencing and RNA sequencing we identified tumor neoantigens that are predicted to bind to major histocompatibility complex class I (MHC-I) and utilized mass cytometry, together with cellular 'barcoding', to profile immune cells from patients with objective response to therapy (n = 8) and those with progressive disease (n = 6). In parallel, a highly-multiplexed combinatorial tetramer staining was used to screen antigen-specific CD8+ T cells in peripheral blood for 782 candidate tumor neoantigens and 71 known viral-derived control peptide epitopes across all patient samples. RESULTS: No significant treatment- or response associated phenotypic difference were measured in bulk CD8+ T cells. Multiplexed peptide-MHC multimer staining detected 20 different neoantigen-specific T cell populations, as well as T cells specific for viral control antigens. Not only were neoantigen-specific T cells more frequently detected in responding patients, their phenotypes were also almost entirely distinct. Neoantigen-specific T cells from responder patients typically showed a differentiated effector phenotype, most like Cytomegalovirus (CMV) and some types of Epstein-Barr virus (EBV)-specific CD8+ T cells. In contrast, more memory-like phenotypic profiles were observed for neoantigen-specific CD8+ T cells from patients with progressive disease. CONCLUSION: This study demonstrates that neoantigen-specific T cells can be detected in peripheral blood in non-small cell lung cancer (NSCLC) patients during anti-PD-L1 therapy. Patients with an objective response had an enrichment of neoantigen-reactive T cells and these cells showed a phenotype that differed from patients without a response. These findings suggest the ex vivo identification, characterization, and longitudinal follow-up of rare tumor-specific differentiated effector neoantigen-specific T cells may be useful in predicting response to checkpoint blockade. TRIAL REGISTRATION: POPLAR trial NCT01903993 .


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Agents, Immunological/therapeutic use , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Aged , Antibodies, Monoclonal, Humanized/pharmacology , Antigens, Neoplasm/genetics , Antigens, Neoplasm/isolation & purification , Antigens, Neoplasm/metabolism , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Drug Monitoring/methods , Female , Humans , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Male , Middle Aged , Mutation , RNA-Seq , Exome Sequencing
8.
Front Immunol ; 10: 1194, 2019.
Article in English | MEDLINE | ID: mdl-31231371

ABSTRACT

Dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm has emerged as a popular tool for visualizing high-parameter single-cell data. While this approach has obvious potential for data visualization it remains unclear how t-SNE analysis compares to conventional manual hand-gating in stratifying and quantitating the frequency of diverse immune cell populations. We applied a comprehensive 38-parameter mass cytometry panel to human blood and compared the frequencies of 28 immune cell subsets using both conventional bivariate and t-SNE-guided manual gating. t-SNE analysis was capable of stratifying every general cellular lineage and most sub-lineages with high correlation between conventional and t-SNE-guided cell frequency calculations. However, specific immune cell subsets delineated by the manual gating of continuous variables were not fully separated in t-SNE space thus causing discrepancies in subset identification and quantification between these analytical approaches. Overall, these studies highlight the consistency between t-SNE and conventional hand-gating in stratifying general immune cell lineages while demonstrating that particular cell subsets defined by conventional manual gating may be intermingled in t-SNE space.


Subject(s)
Flow Cytometry/methods , Single-Cell Analysis/methods , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Humans , Principal Component Analysis
9.
Methods Mol Biol ; 1989: 35-45, 2019.
Article in English | MEDLINE | ID: mdl-31077097

ABSTRACT

Signal interference or overlap in mass cytometry is minimal compared to flow cytometry but must still be considered for optimal panel design and assay sensitivity. Here we describe a procedure for evaluating signal interference dynamics in the context of a 25-parameter core immunophenotyping panel. Specifically, a mass-minus-many (MMM) approach was used to assess background signals in "empty" or "blank" channels intended for further customization. Through this approach cell type-specific variability in signal background is revealed. Further panel customization can thus be performed with an understanding of cell type and channel-specific background levels to enable rational panel design and the objective delineation of gating thresholds during analysis.


Subject(s)
Biomarkers/analysis , Flow Cytometry/methods , Immunophenotyping/methods , Leukocytes, Mononuclear/cytology , Mass Spectrometry/methods , Single-Cell Analysis/methods , Humans , Signal-To-Noise Ratio
10.
J Vis Exp ; (136)2018 06 26.
Article in English | MEDLINE | ID: mdl-30010641

ABSTRACT

Cytokines play a pivotal role in the pathogenesis of autoimmune diseases. Hence, the measurement of cytokine levels has been the focus of multiple studies in an attempt to understand the precise mechanisms that lead to the breakdown of self-tolerance and subsequent autoimmunity. Approaches thus far have been based on the study of one specific aspect of the immune system (a single or few cell types or cytokines), and do not offer a global assessment of complex autoimmune disease. While patient sera-based studies have afforded important insights into autoimmunity, they do not provide the specific cellular source of the dysregulated cytokines detected. A comprehensive single-cell approach to evaluate cytokine production in multiple immune cell subsets, within the context of "intrinsic" patient-specific plasma circulating factors, is described here. This approach enables monitoring of the patient-specific immune phenotype (surface markers) and function (cytokines), either in its native "intrinsic pathogenic" disease state, or in the presence of therapeutic agents (in vivo or ex vivo).


Subject(s)
Flow Cytometry/methods , Immune System/blood supply , Immunophenotyping/mortality , Single-Cell Analysis/methods , Cytokines/immunology , Humans
11.
Cytometry A ; 91(1): 39-47, 2017 01.
Article in English | MEDLINE | ID: mdl-27632576

ABSTRACT

Mass cytometry is capable of measuring more than 40 distinct proteins on individual cells making it a promising technology for innovating biomarker discovery. However, in order for this potential to be fully realized, best practices in panel design need to be further defined in order to achieve consistency and reproducibility in data analysis. Of particular importance are controls that reveal, and panel design principles that mitigate the effects of signal interference or overlap. We observed a disparity between the staining profiles of two noncompeting anti- integrin ß7 mAbs and hypothesized that signal interference was responsible. A mass-minus-one (MMO) control was applied and demonstrated that signal overlap caused the perceived interclonal discrepancy in ß7 expression. Panel redesign in consideration of mass-cytometry specific interference dynamics dramatically improved concordance between both mAbs by redistributing background signals caused by overlap. These studies visualize how signal overlap can complicate mass cytometry data interpretation and demonstrate how the rational distribution of interference can greatly improve panel design and data quality. © 2016 International Society for Advancement of Cytometry.


Subject(s)
Antibodies, Monoclonal/immunology , Flow Cytometry/methods , Integrin beta Chains/biosynthesis , Leukocytes, Mononuclear/metabolism , Antibodies, Monoclonal/chemistry , Gene Expression Regulation , Humans , Integrin beta Chains/immunology , Leukocytes, Mononuclear/ultrastructure
12.
J Allergy Clin Immunol ; 136(5): 1326-36, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26037552

ABSTRACT

BACKGROUND: Activation of Toll-like receptors (TLRs) induces inflammatory responses involved in immunity to pathogens and autoimmune pathogenesis, such as in patients with systemic lupus erythematosus (SLE). Although TLRs are differentially expressed across the immune system, a comprehensive analysis of how multiple immune cell subsets respond in a system-wide manner has not been described. OBJECTIVE: We sought to characterize TLR activation across multiple immune cell subsets and subjects, with the goal of establishing a reference framework against which to compare pathologic processes. METHODS: Peripheral whole-blood samples were stimulated with TLR ligands and analyzed by means of mass cytometry simultaneously for surface marker expression, activation states of intracellular signaling proteins, and cytokine production. We developed a novel data visualization tool to provide an integrated view of TLR signaling networks with single-cell resolution. We studied 17 healthy volunteer donors and 8 patients with newly diagnosed and untreated SLE. RESULTS: Our data revealed the diversity of TLR-induced responses within cell types, with TLR ligand specificity. Subsets of natural killer cells and T cells selectively induced nuclear factor κ light chain enhancer of activated B cells in response to TLR2 ligands. CD14(hi) monocytes exhibited the most polyfunctional cytokine expression patterns, with more than 80 distinct cytokine combinations. Monocytic TLR-induced cytokine patterns were shared among a group of healthy donors, with minimal intraindividual and interindividual variability. Furthermore, autoimmune disease altered baseline cytokine production; newly diagnosed untreated SLE patients shared a distinct monocytic chemokine signature, despite clinical heterogeneity. CONCLUSION: Mass cytometry defined a systems-level reference framework for human TLR activation, which can be applied to study perturbations in patients with inflammatory diseases, such as SLE.


Subject(s)
Killer Cells, Natural/immunology , Lupus Erythematosus, Systemic/immunology , Monocytes/immunology , T-Lymphocytes/immunology , Toll-Like Receptors/metabolism , Cells, Cultured , Chemokines/genetics , Chemokines/metabolism , Humans , Lipopolysaccharide Receptors/metabolism , Lupus Erythematosus, Systemic/genetics , Lymphocyte Activation , NF-kappa B/metabolism , Organ Specificity , Signal Transduction , Single-Cell Analysis/methods , Transcriptome
13.
Vaccine ; 32(45): 5989-97, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25203448

ABSTRACT

Seasonal influenza vaccination is one of the most common medical procedures and yet the extent to which it activates the immune system beyond inducing antibody production is not well understood. In the United States, the most prevalent formulations of the vaccine consist of degraded or "split" viral particles distributed without any adjuvants. Based on previous reports we sought to determine whether the split influenza vaccine activates innate immune receptors-specifically Toll-like receptors. High-dimensional proteomic profiling of human whole-blood using Cytometry by Time-of-Flight (CyTOF) was used to compare signaling pathway activation and cytokine production between the split influenza vaccine and a prototypical TLR response ex vivo. This analysis revealed that the split vaccine rapidly and potently activates multiple immune cell types but yields a proteomic signature quite distinct from TLR activation. Importantly, vaccine induced activity was dependent upon the presence of human sera indicating that a serum factor was necessary for vaccine-dependent immune activation. We found this serum factor to be human antibodies specific for influenza proteins and therefore immediate immune activation by the split vaccine is immune-complex dependent. These studies demonstrate that influenza virus "splitting" inactivates any potential adjuvants endogenous to influenza, such as RNA, but in previously exposed individuals can elicit a potent immune response by facilitating the rapid formation of immune complexes.


Subject(s)
Influenza Vaccines/immunology , Influenza, Human/prevention & control , Monocytes/immunology , Receptors, IgG/immunology , Signal Transduction/immunology , Adult , Antibodies, Viral/blood , Cells, Cultured , Cytokines/immunology , Female , GPI-Linked Proteins/immunology , Humans , ISCOMs/immunology , Immunoglobulin G/blood , Male , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
14.
RNA Biol ; 8(6): 1115-23, 2011.
Article in English | MEDLINE | ID: mdl-22142974

ABSTRACT

MicroRNA (miRNA) genes produce three major RNA products; primary (pri-), precursor (pre-), and mature miRNAs. Each product includes sequences complementary to cognate targets, thus they all can in principle interact with the targets. In a recent study we showed that pri-miRNAs play a direct role in target recognition and repression in the absence of functional mature miRNAs. Here we examined the functional contribution of pri-miRNAs in target regulation when full-length functional miRNAs are present. We found that pri-let-7 loop nucleotides control the production of the 5' end of mature miRNAs and modulate the activity of the miRNA gene. This insight enabled us to modulate biogenesis of functional mature miRNAs and dissect the causal relationships between mature miRNA biogenesis and target repression. We demonstrate that both pri- and mature miRNAs can contribute to target repression and that their contributions can be distinguished by the differences between the pri- and mature miRNAs' sensitivity to bind to the first seed nucleotide. Our results demonstrate that the regulatory information encoded in the pri-/pre-miRNA loop nucleotides controls the activities of pri-miRNAs and mature let-7 by influencing pri-miRNA and target complex formation and the fidelity of mature miRNA seed generation.


Subject(s)
MicroRNAs/genetics , Nucleotides/genetics , RNA Precursors/genetics , RNA Processing, Post-Transcriptional , Animals , Base Sequence , Blotting, Northern , Caenorhabditis elegans/genetics , Cell Line , Gene Expression Regulation , Humans , MicroRNAs/chemistry , MicroRNAs/metabolism , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Nucleotides/metabolism , RNA Precursors/chemistry , RNA Precursors/metabolism
15.
J Immunol ; 185(11): 6426-30, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21037099

ABSTRACT

IL-2 controls the survival of regulatory T cells (Tregs), but it is unclear whether IL-2 also directly affects Treg suppressive capacity in vivo. We have found that eliminating Bim-dependent apoptosis in IL-2- and CD25-deficient mice restored Treg numbers but failed to cure their lethal autoimmune disease, demonstrating that IL-2-dependent survival and suppressive activity can be uncoupled in Tregs. Treatment with IL-2-anti-IL-2-Ab complexes enhanced the numbers and suppressive capacity of IL-2-deprived Tregs with striking increases in CD25, CTLA-4, and CD39/CD73 expression. Although cytokine treatment induced these suppressive mechanisms in both IL-2(-/-) and IL-2(-/-)Bim(-/-) mice, it only reversed autoimmune disease in the latter. Our results suggest that successful IL-2 therapy of established autoimmune diseases will require a threshold quantity of Tregs present at the start of treatment and show that the suppressive capacity of Tregs critically depends on IL-2 even when Treg survival is independent of this cytokine.


Subject(s)
Interleukin-2/physiology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Anemia, Hemolytic, Autoimmune/genetics , Anemia, Hemolytic, Autoimmune/immunology , Anemia, Hemolytic, Autoimmune/therapy , Animals , Apoptosis Regulatory Proteins/deficiency , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Proliferation , Cells, Cultured , Coculture Techniques , Forkhead Transcription Factors/deficiency , Forkhead Transcription Factors/genetics , Gene Deletion , Interleukin-2/genetics , Interleukin-2 Receptor alpha Subunit/deficiency , Interleukin-2 Receptor alpha Subunit/genetics , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , T-Lymphocytes, Regulatory/pathology
16.
Immunity ; 33(4): 597-606, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20933441

ABSTRACT

Dendritic cells (DCs) comprise distinct functional subsets including CD8⁻ and CD8(+) classical DCs (cDCs) and interferon-secreting plasmacytoid DCs (pDCs). The cytokine Flt3 ligand (Flt3L) controls the development of DCs and is particularly important for the pDC and CD8(+) cDC and their CD103(+) tissue counterparts. We report that mammalian target of rapamycin (mTOR) inhibitor rapamycin impaired Flt3L-driven DC development in vitro, with the pDCs and CD8(+)-like cDCs most profoundly affected. Conversely, deletion of the phosphoinositide 3-kinase (PI3K)-mTOR negative regulator Pten facilitated Flt3L-driven DC development in culture. DC-specific Pten targeting in vivo caused the expansion of CD8(+) and CD103(+) cDC numbers, which was reversible by rapamycin. The increased CD8(+) cDC numbers caused by Pten deletion correlated with increased susceptibility to the intracellular pathogen Listeria. Thus, PI3K-mTOR signaling downstream of Flt3L controls DC development, and its restriction by Pten ensures optimal DC pool size and subset composition.


Subject(s)
Dendritic Cells/physiology , Intracellular Signaling Peptides and Proteins/physiology , Membrane Proteins/physiology , Protein Serine-Threonine Kinases/physiology , Signal Transduction/physiology , Animals , Antigens, CD/analysis , CD8-Positive T-Lymphocytes/immunology , Cells, Cultured , Integrin alpha Chains/analysis , Listeriosis/immunology , Mice , Mice, Inbred C57BL , PTEN Phosphohydrolase/physiology , Phosphatidylinositol 3-Kinases/physiology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases
17.
Proc Natl Acad Sci U S A ; 107(42): 18085-90, 2010 Oct 19.
Article in English | MEDLINE | ID: mdl-20921406

ABSTRACT

The early events that determine the decision between lymphocyte tolerance and activation are not well-understood. Using a model of systemic self-antigen recognition by CD4(+) T cells, we show, using single-cell biochemical analyses, that tolerance is characterized by transient signaling events downstream of T-cell receptor engagement in the mammalian target of rapamycin (mTOR) and NF-κB pathways. Parallel studies done by live cell imaging show that the key difference between tolerance and activation is the duration of the T cell-antigen presenting cell (APC) interaction, as revealed by stable T-cell immobilization on antigen encounter. Brief T cell-APC interactions result in tolerance, and prolonged interactions are associated with activation and the development of effector cells. These studies show that the duration of T cell-APC interactions and magnitude of associated TCR-mediated signaling are key determinants of lymphocyte tolerance vs. activation.


Subject(s)
Immune Tolerance , Lymphocyte Activation , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Animals , Antigen-Presenting Cells/immunology , Flow Cytometry , Lymphopenia/immunology , Mice , Mice, Inbred BALB C
18.
EMBO J ; 29(19): 3272-85, 2010 Oct 06.
Article in English | MEDLINE | ID: mdl-20808284

ABSTRACT

Major RNA products of a microRNA (miRNA) gene--the long primary transcript (pri-miRNA), the ∼70-nucleotide (nt) precursor miRNA (pre-miRNA), and the ∼21-nt mature miRNA--all contain the same sequence required for target gene recognition. Thus, it is intrinsically difficult to discern the contribution of individual RNA species or to rule out a function of miRNA precursor species in target repression. Here, we describe a novel approach to dissect the functional contribution of pri-miRNA without compromising important cellular pathways. We show that pri-let-7 has a direct function in target repression in the absence of properly processed mature let-7. Moreover, we show that loop nucleotides provide regulatory controls of the activity of pri-let-7 by modulating interactions between pri-let-7 and target RNAs in vitro and in vivo. Finally, we show that human let-7a-3 pri-miRNA can directly interact with target mRNAs. These findings illustrate that the regulatory information encoded in structured pri-miRNAs may be translated into function through direct interactions with target mRNAs.


Subject(s)
Gene Expression Regulation/physiology , MicroRNAs/physiology , RNA, Messenger/metabolism , Animals , Base Sequence , Blotting, Northern , Caenorhabditis elegans , Cell Line , Gene Expression Regulation/genetics , Humans , Mice , MicroRNAs/biosynthesis , MicroRNAs/metabolism , Molecular Sequence Data , Mutation/genetics , Polymerase Chain Reaction
19.
Cell Host Microbe ; 8(2): 174-85, 2010 Aug 19.
Article in English | MEDLINE | ID: mdl-20709294

ABSTRACT

Vaccinia immunization was pivotal to successful smallpox eradication. However, the early immune responses that distinguish poxvirus immunization from pathogenic infection remain unknown. To address this, we developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by immunizing (vaccinia) and lethal (ectromelia) poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses, leading to IL-6 production, which then initiated STAT3 signaling in dendritic and T cells. In contrast, ectromelia did not induce TLR2 activation, and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These data link early immune signaling events to infection outcome and suggest that activation of different pattern-recognition receptors early after infection may be important in determining vaccine efficacy.


Subject(s)
Ectromelia virus/immunology , Ectromelia, Infectious/immunology , Vaccinia virus/immunology , Vaccinia/immunology , Animals , Cell Line , Dendritic Cells/immunology , Genetic Predisposition to Disease , Host Specificity/immunology , Humans , Immunization , Interleukin-6/physiology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , STAT1 Transcription Factor/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction , T-Lymphocytes/immunology , Toll-Like Receptor 2/physiology
20.
J Immunol ; 183(1): 332-9, 2009 Jul 01.
Article in English | MEDLINE | ID: mdl-19542444

ABSTRACT

An early reaction of CD4(+) T lymphocytes to Ag is the production of cytokines, notably IL-2. To detect cytokine-dependent responses, naive Ag-specific T cells were stimulated in vivo and the presence of phosphorylated STAT5 molecules was used to identify the cell populations responding to IL-2. Within hours of T cell priming, IL-2-dependent STAT5 phosphorylation occurred primarily in Foxp3(+) regulatory T cells. In contrast, the Ag-specific T cells received STAT5 signals only after repeated Ag exposure or memory differentiation. Regulatory T cells receiving IL-2 signals proliferated and developed enhanced suppressive activity. These results indicate that one of the earliest events in a T cell response is the activation of endogenous regulatory cells, potentially to prevent autoimmunity.


Subject(s)
Lymphocyte Activation/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Cell Proliferation , Interleukin-2/biosynthesis , Interleukin-2/physiology , Lymphocyte Activation/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Mice, Transgenic , Phosphorylation , Resting Phase, Cell Cycle/genetics , Resting Phase, Cell Cycle/immunology , STAT5 Transcription Factor/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , T-Lymphocytes, Regulatory/virology , Time Factors , Vaccinia virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...