Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(7): e3002697, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39024225

ABSTRACT

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1 Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.


Subject(s)
Drosophilidae , Genome, Insect , Genomics , Phylogeny , Animals , Drosophilidae/genetics , Drosophilidae/classification , Genomics/methods , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods
2.
bioRxiv ; 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37873137

ABSTRACT

Long-read sequencing is driving rapid progress in genome assembly across all major groups of life, including species of the family Drosophilidae, a longtime model system for genetics, genomics, and evolution. We previously developed a cost-effective hybrid Oxford Nanopore (ONT) long-read and Illumina short-read sequencing approach and used it to assemble 101 drosophilid genomes from laboratory cultures, greatly increasing the number of genome assemblies for this taxonomic group. The next major challenge is to address the laboratory culture bias in taxon sampling by sequencing genomes of species that cannot easily be reared in the lab. Here, we build upon our previous methods to perform amplification-free ONT sequencing of single wild flies obtained either directly from the field or from ethanol-preserved specimens in museum collections, greatly improving the representation of lesser studied drosophilid taxa in whole-genome data. Using Illumina Novaseq X Plus and ONT P2 sequencers with R10.4.1 chemistry, we set a new benchmark for inexpensive hybrid genome assembly at US $150 per genome while assembling genomes from as little as 35 ng of genomic DNA from a single fly. We present 183 new genome assemblies for 179 species as a resource for drosophilid systematics, phylogenetics, and comparative genomics. Of these genomes, 62 are from pooled lab strains and 121 from single adult flies. Despite the sample limitations of working with small insects, most single-fly diploid assemblies are comparable in contiguity (>1Mb contig N50), completeness (>98% complete dipteran BUSCOs), and accuracy (>QV40 genome-wide with ONT R10.4.1) to assemblies from inbred lines. We present a well-resolved multi-locus phylogeny for 360 drosophilid and 4 outgroup species encompassing all publicly available (as of August 2023) genomes for this group. Finally, we present a Progressive Cactus whole-genome, reference-free alignment built from a subset of 298 suitably high-quality drosophilid genomes. The new assemblies and alignment, along with updated laboratory protocols and computational pipelines, are released as an open resource and as a tool for studying evolution at the scale of an entire insect family.

3.
Zootaxa ; 5293(2): 277-293, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37518484

ABSTRACT

Anticheta patzcuaroensis Pote, new species (Diptera: Sciomyzidae), from Lake Pátzcuaro, Michoacán, Mexico, is described and illustrated. The most recent key to the genus Anticheta Haliday in the Nearctic region is edited to include the new species. Information is given about the Sciomyzidae holdings in the Cornell University Insect Collection.


Subject(s)
Diptera , Animals , Mexico , Universities
4.
Fly (Austin) ; 16(1): 128-151, 2022 12.
Article in English | MEDLINE | ID: mdl-35575031

ABSTRACT

The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.


Subject(s)
Drosophila melanogaster , Genitalia , Animals , Female , Male
5.
Fly (Austin) ; 16(1): 37-61, 2022 12.
Article in English | MEDLINE | ID: mdl-34641736

ABSTRACT

The genus Scaptomyza is one of the two Drosophilidae genera with Hawaiian endemic species. This genus is an excellent model for biogeographic studies since it is distributed throughout the majority of continents, including continental islands, the Hawaiian Islands, and many other remote oceanic islands. This genus currently comprises 273 described species, 148 of which are endemic to the Hawaiian Islands. However, most descriptions were published before efforts to standardizing the morphological terminology across the Diptera were made in the 1980's. Since research groups developed their own set of terminologies independently, without considering homologies, multiple terms have been used to refer to the same characters. This is especially true for the male terminalia, which have remarkable modifications within the family Drosophilidae. We reviewed the Scaptomyza literature, in addition to other studies across the Drosophilidae and Diptera, compiled the English synonyms, and provided a visual atlas of each body part, indicating how to recognize the morphological characters. The goal of the present study is to facilitate species identification and propose preferred terms to be adopted for future Scaptomyza descriptions.


Subject(s)
Drosophilidae , Animals , Male , Phylogeny
6.
Article in English | MEDLINE | ID: mdl-38269531

ABSTRACT

A total of 241 mitochondrial genomes were assembled and annotated from the SRA database to reconstruct a mtDNA genome phylogeny for the genus Drosophila, the family Drosophilidae, and close relatives. The resulting mtDNA genome phylogeny is largely congruent with previous higher-level analyses of Drosophila species with the exception of the relationships between the melanogaster, montium, anannassae, saltans and obscura groups. Although relationships within these species groups are congruent between nuclear and mtDNA studies, the mtDNA genome phylogeny of the groups is different when compared to earlier studies. Monophyly of known species groups within the genus Drosophila are highly supported and, as in previous work, the genera Lordiphosa, Hirtodrosophila, Zaprionus and Scaptomya are all imbedded within the genus Drosophila. Incongruence and partitioned support analyses indicate that DNA sequences are better at resolving the phylogeny than their translated protein sequences. Such analyses also indicate that genes on the minus strand of the circular molecule (Lrrna, Srrna, ND4, ND4L and ND5) provide most of the support for the overall phylogenetic hypothesis.

7.
Cells ; 10(10)2021 10 15.
Article in English | MEDLINE | ID: mdl-34685746

ABSTRACT

Postcopulatory sexual selection is credited as a principal force behind the rapid evolution of reproductive characters, often generating a pattern of correlated evolution between interacting, sex-specific traits. Because the female reproductive tract is the selective environment for sperm, one taxonomically widespread example of this pattern is the co-diversification of sperm length and female sperm-storage organ dimension. In Drosophila, having testes that are longer than the sperm they manufacture was believed to be a universal physiological constraint. Further, the energetic and time costs of developing long testes have been credited with underlying the steep evolutionary allometry of sperm length and constraining sperm length evolution in Drosophila. Here, we report on the discovery of a novel spermatogenic mechanism-sperm cyst looping-that enables males to produce relatively long sperm in short testis. This phenomenon (restricted to members of the saltans and willistoni species groups) begins early during spermatogenesis and is potentially attributable to heterochronic evolution, resulting in growth asynchrony between spermatid tails and the surrounding spermatid and somatic cyst cell membranes. By removing the allometric constraint on sperm length, this evolutionary innovation appears to have enabled males to evolve extremely long sperm for their body mass while evading delays in reproductive maturation time. On the other hand, sperm cyst looping was found to exact a cost by requiring greater total energetic investment in testes and a pronounced reduction in male lifespan. We speculate on the ecological selection pressures underlying the evolutionary origin and maintenance of this unique adaptation.


Subject(s)
Animal Structures/anatomy & histology , Drosophila/anatomy & histology , Drosophila/physiology , Spermatozoa/physiology , Animals , Biological Evolution , Male , Phylogeny , Sexual Maturation/physiology , Species Specificity , Testis/anatomy & histology
8.
J Invertebr Pathol ; 173: 107385, 2020 06.
Article in English | MEDLINE | ID: mdl-32325073

ABSTRACT

Sirex noctilio is an invasive Eurasian woodwasp that can kill pine (Pinus spp.) trees and has been introduced to areas of the Southern Hemisphere where plantations of introduced pines are grown. The main method of control of this invasive pest has been introduction and augmentation of a parasitic nematode, Deladenus siricidicola. The strain of D. siricidicola used for biological control of S. noctilio in the Southern Hemisphere originated in Sopron, Hungary. The genotype of D. siricidicola used for biological control sterilizes females of the strain of S. noctilio present in Australia. However, different strains of S. noctilio have been introduced to different geographic areas that have been invaded and different combinations of D. siricidicola and S. noctilio genotypes vary in whether these nematodes sterilize female S. noctilio. Moreover, even in the event of sterilization, partial sterilization can occur, where not all woodwasp eggs are compromised. Sirex noctilio has now invaded North America accidentally, putatively accompanying D. siricidicola, but these host/parasite pairings do not result in female sterilization. More information is needed about the genetic diversity of D. siricidicola both where it is native and introduced. In addition, the host range of these nematodes is necessary to understand to evaluate their potential use in areas where pine communities are native. We collected and evaluated Deladenus parasitizing S. noctilio, S. juvencus, and associated insects in Hungary, Denmark, Spain, and Italy, as well as in the United States. Phylogenetic analyses were unable to fully provide fine resolution, although some community structure was evident. Many D. siricidicola samples from Hungary had identical COI and ITS sequences to the strain of D. siricidicola accidentally introduced to North America putatively when S. noctilio invaded. The same or similar strains of D. siricidicola parasitize two different Sirex species that utilize pines as well as a Sirex parasitoid and a pine-boring beetle, demonstrating some limited variability in host specificity of this species. These results highlight the genetic diversity of Deladenus siricidicola in its native range in Europe.


Subject(s)
Genetic Variation , Insect Control , Pest Control, Biological , Tylenchida/genetics , Animals , Europe , Female , Host-Parasite Interactions , Hymenoptera , Introduced Species , North America
9.
PLoS Negl Trop Dis ; 14(4): e0008154, 2020 04.
Article in English | MEDLINE | ID: mdl-32302303

ABSTRACT

BACKGROUND: Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background. CONCLUSIONS/SIGNIFICANCE: Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.


Subject(s)
Aedes/genetics , Alleles , Evolution, Molecular , Insecticide Resistance/genetics , Mutation , Recombination, Genetic , Animals , Female , Haplotypes , Insecticides/pharmacology , Male , Mosquito Vectors/genetics , Phylogeny , Pyrethrins/pharmacology
10.
Genetics ; 214(1): 49-73, 2020 01.
Article in English | MEDLINE | ID: mdl-31907301

ABSTRACT

Behaviors associated with reproduction are major contributors to the evolutionary success of organisms and are subject to many evolutionary forces, including natural and sexual selection, and sexual conflict. Successful reproduction involves a range of behaviors, from finding an appropriate mate, courting, and copulation, to the successful production and (in oviparous animals) deposition of eggs following mating. As a consequence, behaviors and genes associated with reproduction are often under strong selection and evolve rapidly. Courtship rituals in flies follow a multimodal pattern, mediated through visual, chemical, tactile, and auditory signals. Premating behaviors allow males and females to assess the species identity, reproductive state, and condition of their partners. Conflicts between the "interests" of individual males, and/or between the reproductive strategies of males and females, often drive the evolution of reproductive behaviors. For example, seminal proteins transmitted by males often show evidence of rapid evolution, mediated by positive selection. Postmating behaviors, including the selection of oviposition sites, are highly variable and Drosophila species span the spectrum from generalists to obligate specialists. Chemical recognition features prominently in adaptation to host plants for feeding and oviposition. Selection acting on variation in pre-, peri-, and postmating behaviors can lead to reproductive isolation and incipient speciation. Response to selection at the genetic level can include the expansion of gene families, such as those for detecting pheromonal cues for mating, or changes in the expression of genes leading to visual cues such as wing spots that are assessed during mating. Here, we consider the evolution of reproductive behavior in Drosophila at two distinct, yet complementary, scales. Some studies take a microevolutionary approach, identifying genes and networks involved in reproduction, and then dissecting the genetics underlying complex behaviors in D. melanogaster Other studies take a macroevolutionary approach, comparing reproductive behaviors across the genus Drosophila and how these might correlate with environmental cues. A full synthesis of this field will require unification across these levels.


Subject(s)
Drosophila melanogaster/genetics , Sexual Behavior, Animal/physiology , Adaptation, Physiological , Animals , Biological Evolution , Courtship , Drosophila melanogaster/physiology , Female , Genetic Speciation , Male , Reproduction
11.
Fly (Austin) ; 13(1-4): 51-64, 2019.
Article in English | MEDLINE | ID: mdl-31401934

ABSTRACT

Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.


Subject(s)
Drosophila melanogaster/anatomy & histology , Genitalia, Male/anatomy & histology , Terminology as Topic , Animals , Male
12.
Zootaxa ; 4503(1): 1-70, 2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30486043

ABSTRACT

Twenty-one (six known and 15 new) species of the genus Leucophenga from the Oriental region are described or redescribed: L. jacobsoni Duda, 1926; L. kurahashii Okada, 1987; L. setipalpis Duda, 1923; L. sorii Kang, Lee Bhang, 1965; L. spinifera Okada, 1987; L. varinervis Duda, 1923; L. acantha Huang Chen, sp. nov.; L. alafumosa Huang Chen, sp. nov.; L. brevipenis Huang Chen, sp. nov.; L. brevitabulata Huang Chen, sp. nov.; L. delta Huang Chen, sp. nov.; L. forcipula Huang Chen, sp. nov.; L. fuscipalpula Huang Chen, sp. nov.; L. glabtabulata Huang Chen, sp. nov.; L. helvipecta Huang Chen, sp. nov.; L. hyaloptera Huang Chen, sp. nov.; L. oxyptera Huang Chen, sp. nov.; L. platypyga Huang Chen, sp. nov.; L. serrateiceps Huang Chen, sp. nov.; L. valvata Huang Chen, sp. nov.; L. zebrina Huang Chen, sp. nov. A key and a morphological summary table to all these Leucophenga species are provided. Phylogenetic relationships among these 21 Leucophenga species, another 14 congeneric, known species from seven groups, and two representative outgroup taxa are reconstructed using 169 DNA sequences of the partial mitochondrial cytochrome c oxidase subunit I (mtCOI) gene. In sum, 13 of the 21 Leucophenga species, which possess the only diagnostic character of the proxima species group (abdominal third tergite shortened, anteriorly discolored in males), are not monophyletic. Therefore, all the Leucophenga species described or redescribed in this study are temporarily classified as unplaced species (except for L. sorii, which has been assigned to the sorii species group) to avoid further confusion.


Subject(s)
Diptera , Drosophilidae , Animals , Gastropoda , Genes, Mitochondrial , Male , Phylogeny
13.
Genetics ; 209(1): 1-25, 2018 May.
Article in English | MEDLINE | ID: mdl-29716983

ABSTRACT

Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies.


Subject(s)
Drosophila/classification , Drosophila/genetics , Phylogeny , Animals , DNA Barcoding, Taxonomic , Evolution, Molecular
14.
Bioessays ; 40(5): e1700246, 2018 05.
Article in English | MEDLINE | ID: mdl-29603298

ABSTRACT

The Hawaiian Drosophila have been a model system for evolutionary, ecological, and ethological studies since the inception of the Hawaiian Drosophila Project in the 1960s. Here we review the past and present research on this incredible lineage and provide a prospectus for future directions on genomics and microbial interactions. While the number of publications on this group has waxed and waned over the years, we assert that recent systematic, biogeographic, and ecological studies have reinvigorated Hawaiian Drosophila as an evolutionary model system. The characteristics that distinguish good model clades from good model organisms (e.g., Drosophila melanogaster) are somewhat different so we first define what constitutes a good evolutionary model. We argue that the Hawaiian Drosophila possess many desired aspects of a good evolutionary model, describe how this group of geographically isolated flies have been used in the past, and propose some exciting avenues for future evolutionary research on this diverse, dynamic clade of Drosophila.


Subject(s)
Biological Evolution , Drosophila melanogaster , Animals , Drosophila , Ecology , Hawaii , Phylogeny
15.
PeerJ ; 4: e2704, 2016.
Article in English | MEDLINE | ID: mdl-27896033

ABSTRACT

The family Dolichopodidae forms two of the four largest evolutionary radiations in the Hawaiian Islands across all flies: Campsicnemus (183 spp) and the Eurynogaster complex (66 spp). They also include a small radiation of Conchopus (6 spp). A handful of other dolichopodid species are native to the islands in singleton lineages or small radiations. This study provides a phylogenetic perspective on the colonization history of the dolichopodid fauna in the islands. We generated a multi-gene data set including representatives from 11 of the 14 endemic Hawaiian dolichopodid genera to examine the history of colonization to the islands, and analyzed it using Bayesian and maximum likelihood phylogenetic methods. We used a subset of the data that included Conchopus and the eight genera comprising the Eurynogaster complex to estimate the first phylogenetic hypothesis for these endemic groups, then used Beast to estimate their age of arrival to the archipelago. The Eurynogaster complex, Campsicnemus and Conchopus are clearly the result of independent colonizations. The results strongly support the Eurynogaster complex as a monophyletic group, and also supports the monophyly of 4 of the 8 described genera within the complex (Adachia, Arciellia, Uropachys and Eurynogaster). Members of the family Dolichopodidae have been dispersing over vast distances to colonize the Hawaiian Archipelago for millions of years, leading to multiple independent evolutionary diversification events. The Eurynogaster complex arrived in the Hawaiian Archipelago 11.8 Ma, well before the arrival of Campsicnemus (4.5 Ma), and the even more recent Conchopus (1.8 Ma). Data presented here demonstrate that the Hawaiian Dolichopodidae both disperse and diversify easily, a rare combination that lays the groundwork for field studies on the reproductive isolating mechanisms and ecological partitioning of this group.

16.
Biodivers Data J ; (4): e5611, 2016.
Article in English | MEDLINE | ID: mdl-27226743

ABSTRACT

The distributions of Hawaiian Canacidae, comprising nearly 800 individual collection events, are reviewed and a total of four new island records are reported. These include Canaceoides angulatus from Kahoolawae and Procanace bifurcata from Molokai and Maui, and Procanace constricta from Oahu. A new species from Kauai, Procanace hardyi O'Grady and Pak, is described. This species is closely related to P. constricta from Oahu, Maui, Molokai and Hawaii and shares a similar constriction of the abdomen between tergites four and five but differs in the configuration of the seventh abdominal tergite. Detailed distribution maps for all species are included.

17.
PLoS One ; 9(11): e113227, 2014.
Article in English | MEDLINE | ID: mdl-25420017

ABSTRACT

The Hawaiian Drosophilidae radiation is an ecologically and morphologically diverse clade of almost 700 described species. A phylogenetic approach is key to understanding the evolutionary forces that have given rise to this diverse lineage. Here we infer the phylogeny for the antopocerus, modified tarsus and ciliated tarsus (AMC) clade, a lineage comprising 16% (91 of 687 species) of the described Hawaiian Drosophilidae. To improve on previous analyses we constructed the largest dataset to date for the AMC, including a matrix of 15 genes for 68 species. Results strongly support most of the morphologically defined species groups as monophyletic. We explore the correlation of increased diversity in biogeography, sexual selection and ecology on the present day diversity seen in this lineage using a combination of dating methods, rearing records, and distributional data. Molecular dating analyses indicate that AMC lineage started diversifying about 4.4 million years ago, culminating in the present day AMC diversity. We do not find evidence that ecological speciation or sexual selection played a part in generating this diversity, but given the limited number of described larval substrates and secondary sexual characters analyzed we can not rule these factors out entirely. An increased rate of diversification in the AMC is found to overlap with the emergence of multiple islands in the current chain of high islands, specifically Oahu and Kauai.


Subject(s)
DNA, Mitochondrial/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Genetic Variation , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/chemistry , Drosophila/classification , Genes, Mitochondrial/genetics , Geography , Hawaii , Models, Genetic , Molecular Sequence Data , Nuclear Proteins/genetics , Sequence Analysis, DNA , Species Specificity , Time Factors
18.
Mol Phylogenet Evol ; 81: 232-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25219449

ABSTRACT

Flies in the genus Campsicnemus have diversified into the second-largest adaptive radiation of Diptera in the Hawaiian Islands, with 179 Hawaiian endemic species currently described. Here we present the first phylogenetic analysis of Campsicnemus, with a focus on the Hawaiian fauna. We analyzed a combination of two nuclear (CAD, EF1α) and five mitochondrial (COI, COII, 12S, 16S, ND2) loci using Bayesian and maximum likelihood approaches to generate a phylogenetic hypothesis for the genus Campsicnemus. Our sampling included a total of 84 species (6 species from Europe, 1 from North America, 7 species from French Polynesia and 70 species from the Hawaiian Islands). The phylogenies were used to estimate divergence times, reconstruct biogeographic history, and infer ancestral ecological associations within this large genus. We found strong support for a South Pacific+Hawaiian clade, as well as for a monophyletic Hawaiian lineage. Divergence time estimates suggest that Hawaiian Islands were colonized approximately 4.6 million years ago, suggesting that most of the diversity within Campsicnemus evolved since the current high islands began forming ∼5 million years ago. We also observe a novel ecotype within the Pacific Campsicnemus; a widespread obligate water-skating form that has arisen multiple times across the Pacific Islands. Together, these analyses suggest that a combination of ecological, biogeographic and temporal factors have led to the impressive diversity of long-legged flies in Hawaii and elsewhere in the Pacific.


Subject(s)
Biological Evolution , Diptera/classification , Phylogeny , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Diptera/genetics , Hawaii , Likelihood Functions , Models, Genetic , Polynesia , Sequence Analysis, DNA
19.
Biodivers Data J ; (2): e1110, 2014.
Article in English | MEDLINE | ID: mdl-25197231

ABSTRACT

Here we summarize the known distributional data for the Hawaiian Scatella (Ephydridae). We report on four new island records; Scatellaamnica and Scatellastagnalis from Kauai, Scatellaoahuense from Lanai, and Scatellaterryi from Maui. A list of material present, comprising over 3100 individual specimen records in the collections of the Bernice Pauahi Bishop Museum, University of Hawaii at Manoa, and Essig Musuem of Entomology at UC Berkeley is included, along with details distributional maps for the Hawaiian endemic species.

20.
Biodivers Data J ; (2): e1010, 2014.
Article in English | MEDLINE | ID: mdl-24855434

ABSTRACT

New island records are reported for five species of Asteia endemic to the Hawaiian Islands (Asteiahawaiiensis, Asteiamauiensis, Asteiamolokaiensis, Asteiapalikuensis, Asteiasabroskyi). These new records expand our understanding of distributions in Asteia, change the percentage of single island endemics from 78% to 33%, and have significance in how we view the process of diversification acting in this lineage. We also present a list of the known rearing records for two species in this group. Asteiamontgomeryi has been recorded from Erythrina and Asteiasabroskyi has been reared from Pisonia, Urera, Charpentiera and Hibiscadelphus.

SELECTION OF CITATIONS
SEARCH DETAIL