Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
FEMS Microbiol Ecol ; 100(4)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38373802

ABSTRACT

Liver abscesses (LA) resulting from bacterial infection in cattle pose a significant global challenge to the beef and dairy industries. Economic losses from liver discounts at slaughter and reduced animal performance drive the need for effective mitigation strategies. Tylosin phosphate supplementation is widely used to reduce LA occurrence, but concerns over antimicrobial overuse emphasize the urgency to explore alternative approaches. Understanding the microbial ecology of LA is crucial to this, and we hypothesized that a reduced timeframe of tylosin delivery would alter LA microbiomes. We conducted 16S rRNA sequencing to assess severe liver abscess bacteriomes in beef cattle supplemented with in-feed tylosin. Our findings revealed that shortening tylosin supplementation did not notably alter microbial communities. Additionally, our findings highlighted the significance of sample processing methods, showing differing communities in bulk purulent material and the capsule-adhered material. Fusobacterium or Bacteroides ASVs dominated LA, alongside probable opportunistic gut pathogens and other microbes. Moreover, we suggest that liver abscess size correlates with microbial community composition. These insights contribute to our understanding of factors impacting liver abscess microbial ecology and will be valuable in identifying antibiotic alternatives. They underscore the importance of exploring varied approaches to address LA while reducing reliance on in-feed antibiotics.


Subject(s)
Liver Abscess , Microbiota , Cattle , Animals , Tylosin/pharmacology , RNA, Ribosomal, 16S/genetics , Liver Abscess/veterinary , Liver Abscess/epidemiology , Liver Abscess/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Dietary Supplements/analysis , Animal Feed/analysis
2.
Front Microbiol ; 14: 1104667, 2023.
Article in English | MEDLINE | ID: mdl-37077241

ABSTRACT

Seaweeds have received a great deal of attention recently for their potential as methane-suppressing feed additives in ruminants. To date, Asparagopsis taxiformis has proven a potent enteric methane inhibitor, but it is a priority to identify local seaweed varieties that hold similar properties. It is essential that any methane inhibitor does not compromise the function of the rumen microbiome. In this study, we conducted an in vitro experiment using the RUSITEC system to evaluate the impact of three red seaweeds, A. taxiformis, Palmaria mollis, and Mazzaella japonica, on rumen prokaryotic communities. 16S rRNA sequencing showed that A. taxiformis had a profound effect on the microbiome, particularly on methanogens. Weighted Unifrac distances showed significant separation of A. taxiformis samples from the control and other seaweeds (p < 0.05). Neither P. mollis nor M. japonica had a substantial effect on the microbiome (p > 0.05). A. taxiformis reduced the abundance of all major archaeal species (p < 0.05), leading to an almost total disappearance of the methanogens. Prominent fiber-degrading and volatile fatty acid (VFA)-producing bacteria including Fibrobacter and Ruminococcus were also inhibited by A. taxiformis (p < 0.05), as were other genera involved in propionate production. The relative abundance of several other bacteria including Prevotella, Bifidobacterium, Succinivibrio, Ruminobacter, and unclassified Lachnospiraceae were increased by A. taxiformis suggesting that the rumen microbiome adapted to an initial perturbation. Our study provides baseline knowledge of microbial dynamics in response to seaweed feeding over an extended period and suggests that feeding A. taxiformis to cattle to reduce methane may directly, or indirectly, inhibit important fiber-degrading and VFA-producing bacteria.

3.
J Anim Sci ; 1012023 Jan 03.
Article in English | MEDLINE | ID: mdl-36617172

ABSTRACT

Supplementation of ruminant diets with the methane (CH4) inhibitor 3-nitrooxypropanol (3-NOP; DSM Nutritional Products, Switzerland) is a promising greenhouse gas mitigation strategy. However, most studies have used high grain or mixed forage-concentrate diets. The objective of this study was to evaluate the effects of supplementing a high-forage diet (90% forage DM basis) with 3-NOP on dry matter (DM) intake, rumen fermentation and microbial community, salivary secretion, enteric gas emissions, and apparent total-tract nutrient digestibility. Eight ruminally cannulated beef heifers (average initial body weight (BW) ±â€…SD, 515 ±â€…40.5 kg) were randomly allocated to two treatments in a crossover design with 49-d periods. Dietary treatments were: 1) control (no 3-NOP supplementation); and 2) 3-NOP (control + 150 mg 3-NOP/kg DM). After a 16-d diet adaption, DM intake was recorded daily. Rumen contents were collected on days 17 and 28 for volatile fatty acid (VFA) analysis, whereas ruminal pH was continuously monitored from days 20 to 28. Eating and resting saliva production were measured on days 20 and 31, respectively. Diet digestibility was measured on days 38-42 by the total collection of feces, while enteric gas emissions were measured in chambers on days 46-49. Data were analyzed using the mixed procedure of SAS. Dry matter intake and apparent total-tract digestibility of nutrients (DM, neutral and acid detergent fiber, starch, and crude protein) were similar between treatments (P ≥ 0.15). No effect was observed on eating and resting saliva production. Relative abundance of the predominant bacterial taxa and rumen methanogen community was not affected by 3-NOP supplementation but rather by rumen digesta phase and sampling hour (P ≤ 0.01). Total VFA concentration was lower (P = 0.004) following 3-NOP supplementation. Furthermore, the reduction in acetate and increase in propionate molar proportions for 3-NOP lowered (P < 0.001) the acetate to propionate ratio by 18.9% as compared with control (4.1). Mean pH was 0.21 units lower (P < 0.001) for control than 3-NOP (6.43). Furthermore, CH4 emission (g/d) and yield (g/kg DMI) were 22.4 and 22.0% smaller (P < 0.001), respectively, for 3-NOP relative to control. Overall, the results indicate that enteric CH4 emissions were decreased by more than 20% with 3-NOP supplementation of a forage diet without affecting DM intake, predominant rumen microbial community, and apparent total-tract nutrients digestibility.


This study evaluated the effects of supplementing forage fed cattle with 3-nitrooxypropanol (150 mg/kg dry matter) on feed intake, rumen fermentation and microbial community composition, methane emissions, and nutrient digestibility. Eight ruminally cannulated beef heifers were used for the experiment. The results indicated that 3-nitrooxypropanol supplementation substantially reduced methane emissions without affecting feed intake and total-tract digestibility of nutrients.


Subject(s)
Methane , Propionates , Cattle , Animals , Female , Methane/metabolism , Propionates/metabolism , Animal Feed/analysis , Diet/veterinary , Eating , Fatty Acids, Volatile/metabolism , Dietary Supplements/analysis , Rumen/metabolism , Fermentation , Digestion , Lactation
4.
Anim Nutr ; 10: 216-222, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35785258

ABSTRACT

Urea nitrogen secreted from blood to rumen is a crucial factor shaping the symbiotic relationship between host ruminants and their microbial populations. Passage of urea across rumen epithelia is facilitated by urea transporter B (UT-B), but the long-term regulation of these proteins remains unclear. As ruminal function develops over a period of months, the developing rumen is an excellent model with which to investigate this regulation. Using rumen epithelium samples of calves from birth to 96 d of age, this study performed immunolocalization studies to localize and semi-quantify UT-B protein development. As expected, preliminary experiments confirmed that ruminal monocarboxylate transporter 1 (MCT1) short chain fatty acid transporter protein abundance increased with age (P < 0.01, n = 4). Further investigation revealed that ruminal UT-B was present in the first few weeks of life and initially detected in the basolateral membrane of stratum basale cells. Over the next 2 months, UT-B staining spread to other epithelial layers and semi-quantification indicated that UT-B abundance significantly increased with age (P < 0.01, n = 4 or 6). These changes were in line with the development of rumen function after the advent of solid feed intake and weaning, exhibiting a similar pattern to both MCT1 transporters and papillae growth. This study therefore confirmed age-dependent changes of in situ ruminal UT-B protein, adding to our understanding of the long-term regulation of ruminal urea transporters.

5.
BMC Genomics ; 23(1): 69, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062879

ABSTRACT

BACKGROUND: The increasing prevalence and expanding geographical range of the chronic wasting disease (CWD) panzootic in cervids is threatening human, animal, environmental and economic health. The pathogenesis of CWD in cervids is, however, not well understood. We used RNA sequencing (RNA-seq) to compare the brain transcriptome from white-tailed deer (WTD; Odocoileus virginianus) clinically affected with CWD (n = 3) to WTD that tested negative (n = 8) for CWD. In addition, one preclinical CWD+ brain sample was analyzed by RNA-seq. RESULTS: We found 255 genes that were significantly deregulated by CWD, 197 of which were upregulated. There was a high degree of overlap in differentially expressed genes (DEGs) identified when using either/both the reference genome assembly of WTD for mapping sequenced reads to or the better characterized genome assembly of a closely related model species, Bos taurus. Quantitative PCR of a subset of the DEGs confirmed the RNA-seq data. Gene ontology term enrichment analysis found a majority of genes involved in immune activation, consistent with the neuroinflammatory pathogenesis of prion diseases. A metagenomic analysis of the RNA-seq data was conducted to look for the presence of spiroplasma and other bacteria in CWD infected deer brain tissue. CONCLUSIONS: The gene expression changes identified highlight the role of innate immunity in prion infection, potential disease associated biomarkers and potential targets for therapeutic agents. An association between CWD and spiroplasma infection was not found.


Subject(s)
Deer , Prions , Wasting Disease, Chronic , Animals , Cattle , Deer/genetics , Humans , Transcriptome , Wasting Disease, Chronic/genetics
6.
Microbiome ; 9(1): 229, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34814938

ABSTRACT

BACKGROUND: Carbohydrate-active enzymes (CAZymes) form the most widespread and structurally diverse set of enzymes involved in the breakdown, biosynthesis, or modification of lignocellulose that can be found in living organisms. However, the structural diversity of CAZymes has rendered the targeted discovery of novel enzymes extremely challenging, as these proteins catalyze many different chemical reactions and are sourced by a vast array of microbes. Consequently, many uncharacterized members of CAZyme families of interest have been overlooked by current methodologies (e.g., metagenomic screening) used to discover lignocellulolytic enzymes. RESULTS: In the present study, we combined phenotype-based selective pressure on the rumen microbiota with targeted functional profiling to guide the discovery of unknown CAZymes. In this study, we found 61 families of glycoside hydrolases (GH) (out of 182 CAZymes) from protein sequences deposited in the CAZy database-currently associated with more than 20,324 microbial genomes. Phenotype-based selective pressure on the rumen microbiome showed that lignocellulolytic bacteria (e.g., Fibrobacter succinogenes, Butyrivibrio proteoclasticus) and three GH families (e.g., GH11, GH13, GH45) exhibited an increased relative abundance in the rumen of feed efficient cattle when compared to their inefficient counterparts. These results paved the way for the application of targeted functional profiling to screen members of the GH11 and GH45 families against a de novo protein reference database comprised of 1184 uncharacterized enzymes, which led to the identification of 18 putative xylanases (GH11) and three putative endoglucanases (GH45). The biochemical proof of the xylanolytic activity of the newly discovered enzyme validated the computational simulations and demonstrated the stability of the most abundant xylanase. CONCLUSIONS: These findings contribute to the discovery of novel enzymes for the breakdown, biosynthesis, or modification of lignocellulose and demonstrate that the rumen microbiome is a source of promising enzyme candidates for the biotechnology industry. The combined approaches conceptualized in this study can be adapted to any microbial environment, provided that the targeted microbiome is easy to manipulate and facilitates enrichment for the microbes of interest. Video Abstract.


Subject(s)
Microbiota , Rumen , Animals , Cattle , Glycoside Hydrolases/genetics , Glycoside Hydrolases/metabolism , Metagenome , Metagenomics , Rumen/microbiology
7.
Vet Sci ; 8(7)2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34357930

ABSTRACT

The current study employed both amplicon and shotgun sequencing to examine and compare the rumen microbiome in Angus bulls fed with either a backgrounding diet (BCK) or finishing diet (HG), to assess if both methods produce comparable results. Rumen digesta samples from 16 bulls were subjected for microbial profiling. Distinctive microbial profiles were revealed by the two methods, indicating that choice of sequencing approach may be a critical facet in studies of the rumen microbiome. Shotgun-sequencing identified the presence of 303 bacterial genera and 171 archaeal species, several of which exhibited differential abundance. Amplicon-sequencing identified 48 bacterial genera, 4 archaeal species, and 9 protozoal species. Among them, 20 bacterial genera and 5 protozoal species were differentially abundant between the two diets. Overall, amplicon-sequencing showed a more drastic diet-derived effect on the ruminal microbial profile compared to shotgun-sequencing. While both methods detected dietary differences at various taxonomic levels, few consistent patterns were evident. Opposite results were seen for the phyla Firmicutes and Bacteroidetes, and the genus Selenomonas. This study showcases the importance of sequencing platform choice and suggests a need for integrative methods that allow robust comparisons of microbial data drawn from various omic approaches, allowing for comprehensive comparisons across studies.

8.
Sci Rep ; 10(1): 21264, 2020 12 04.
Article in English | MEDLINE | ID: mdl-33277514

ABSTRACT

Aberdeen Angus calves were sacrificed from immediately post-birth up to 96 days of age (DOA) and ileal samples were collected for microbial, histological and immunological analyses. Firmicutes bacteria were established immediately in the ileum of calves after birth and remained the dominant phyla at all time points from birth until 96 DOA. Temporal shifts in phyla reflected significantly increased Bacteroidetes at birth followed by temporal increases in Actinobacteria abundance over time. At a cellular level, a significant increase in cell density was detected in the ileal villi over time. The innate cell compartment at birth was composed primarily of eosinophils and macrophages with a low proportion of adaptive T lymphocytes; whereas an increase in the relative abundance of T cells (including those in the intra-epithelial layer) was observed over time. The ileal intestinal cells were immunologically competent as assessed by expression levels of genes encoding the inflammasome sensor NLRP3, and inflammatory cytokines IL1A, IL1B and IL33-all of which significantly increased from birth. In contrast, a temporal reduction in genes encoding anti-inflammatory cytokine IL10 was detected from birth. This study provides an integrated baseline of microbiological, histological and immunological data on the immune adaptation of the neonatal ileum to microbial colonisation in calves.


Subject(s)
Ileum/microbiology , Animals , Animals, Newborn , Bacteroidetes/genetics , Bacteroidetes/physiology , Cattle , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-1alpha/genetics , Interleukin-1alpha/metabolism , Interleukin-33/genetics , Interleukin-33/metabolism , Microbiota/genetics , Microbiota/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Annu Rev Anim Biosci ; 8: 199-220, 2020 02 15.
Article in English | MEDLINE | ID: mdl-32069435

ABSTRACT

Ruminant production systems face significant challenges currently, driven by heightened awareness of their negative environmental impact and the rapidly rising global population. Recent findings have underscored how the composition and function of the rumen microbiome are associated with economically valuable traits, including feed efficiency and methane emission. Although omics-based technological advances in the last decade have revolutionized our understanding of host-associated microbial communities, there remains incongruence over the correct approach for analysis of large omic data sets. A global approach that examines host/microbiome interactions in both the rumen and the lower digestive tract is required to harness the full potential of the gastrointestinal microbiome for sustainable ruminant production. This review highlights how the ruminant animal production community may identify and exploit the causal relationships between the gut microbiome and host traits of interest for a practical application of omic data to animal health and production.


Subject(s)
Cattle/microbiology , Cattle/physiology , Gastrointestinal Microbiome/physiology , Animal Husbandry , Animals , Environment , Methane/biosynthesis , Rumen/metabolism , Rumen/microbiology
10.
FEMS Microbiol Ecol ; 96(2)2020 02 01.
Article in English | MEDLINE | ID: mdl-31917419

ABSTRACT

Manipulation of the rumen microorganisms during early life has emerged as a promising strategy for persistent improvement of nutrient utilisation and lowering of enteric methanogenesis. However, limited understanding of the dynamics of rumen microbial colonisation has prevented the identification of the optimum timeframe for such interventions. The present study used DNA amplicon sequencing of the 16S rRNA gene to assess bacterial and archaeal dynamics in the rumen digesta of beef calves raised on two farms from birth through to post-weaning. The colonisation patterns of both communities were influenced by age (P < 0.05) and farm of origin (P < 0.05). The bacterial community exhibited an age-wise progression during the first month of life which appeared to be partly related to diet, and settled by day 21, indicating that this may mark the boundary of a timeframe for intervention. The archaeal community appeared less sensitive to age/diet than bacteria in the first month of life but was more sensitive to farm environment. These data show that ruminal microbial composition during early life is driven by calf age, diet and local environment, and provide important fundamental information concerning the ontogeny of the rumen microbiota from birth.


Subject(s)
Cattle/microbiology , Gastrointestinal Microbiome/genetics , Rumen/microbiology , Age Factors , Animals , Archaea/classification , Archaea/genetics , Archaea/isolation & purification , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cattle/growth & development , Diet/veterinary , Farms , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Weaning
11.
Sci Rep ; 8(1): 14901, 2018 10 08.
Article in English | MEDLINE | ID: mdl-30297834

ABSTRACT

Enrichment of calf diets with exogenous butyrate has shown promise as a promotor of calf growth and intestinal development. However, the impact of dietary derived butyrate on the gut microbiota and their potential role, in turn, as mediators of its effect on calf growth and development is not known. Here, the effects of butyrate supplementation on rumen and hindgut microbiota and fermentation profiles were assessed in 16 Holstein-Friesian bull calves randomly assigned to one of two groups: Control (CON) fed conventional milk replacer or Sodium-Butyrate (SB - added to milk replacer) from days 7 to 56 of life. In the colon, total short chain fatty acid (SCFA), propionate and acetate concentrations were increased by SB (P < 0.05). 16S rRNA gene amplicon sequencing showed cecal abundance of butyrate producers Butyrivibrio and Shuttleworthia were decreased by SB (P < 0.05), while that of the propionate producer Phascolarctobacterium was higher (P < 0.05). Mogibacterium is associated with impaired gut health and was reduced in the cecum of SB calves (P < 0.05). These data show that the beneficial effects of SB on growth and performance occur in tandem with changes in the abundance of important SCFA producing and health-associated bacteria in the hindgut in milk-fed calves.


Subject(s)
Butyrates/pharmacology , Dairying , Fermentation , Food, Fortified , Gastrointestinal Microbiome , Milk/chemistry , Weaning , Animals , Bacteria/drug effects , Biodiversity , Cattle , Fermentation/drug effects , Gastrointestinal Microbiome/drug effects , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Male , Phylogeny , Principal Component Analysis , Rumen/drug effects , Rumen/metabolism , Rumen/microbiology
12.
BMC Vet Res ; 13(1): 391, 2017 Dec 14.
Article in English | MEDLINE | ID: mdl-29237479

ABSTRACT

BACKGROUND: Caesarean section is a routine veterinary obstetrical procedure employed to alleviate dystocia in cattle. However, CS, particularly before the onset of labour, is known to negatively affect neonatal respiration and metabolic adaptation in humans, though there is little published information for cattle. The aim of this study was to investigate the effect of elective caesarean section (ECS) or normal trans-vaginal (TV) delivery, on lung and jejunal gene expression profiles of neonatal calves. RESULTS: Paternal half-sib Angus calves (gestation length 278 + 1.8 d) were delivered either transvaginally (TV; n = 8) or by elective caesarean section (ECS; n = 9) and immediately euthanized. Lung and jejunum epithelial tissue was isolated and snap frozen. Total RNA was extracted using Trizol reagent and reverse transcribed to generate cDNA. For lung tissue, primers were designed to target genes involved in immunity, surfactant production, cellular detoxification, membrane transport and mucin production. Primers for jejunum tissue were chosen to target mucin production, immunoglobulin uptake, cortisol reaction and membrane trafficking. Quantitative real-time PCR reactions were performed and data were statistically analysed using mixed models ANOVA. In lung tissue the expression of five genes were affected (p < 0.05) by delivery method. Four of these genes were present at lower (LAP, CYP1A1, SCN11α and SCN11ß) and one (MUC5AC) at higher abundance in ECS compared with TV calves. In jejunal tissue, expression of TNFα, Il-1ß and 1 l-6 was higher in ECS compared with TV calves. CONCLUSIONS: This novel study shows that ECS delivery affects the expression of key genes involved in the efficiency of the pulmonary liquid to air transition at birth, and may lead to an increased inflammatory response in jejunal tissue, which could compromise colostral immunoglobulin absorption. These findings are important to our understanding of the viability and management of neonatal calves born through ECS.


Subject(s)
Animals, Newborn/metabolism , Cattle/metabolism , Cesarean Section/veterinary , Delivery, Obstetric/veterinary , Jejunum/metabolism , Lung/metabolism , Animals , Animals, Newborn/physiology , Cattle/physiology , Cesarean Section/adverse effects , Female , Immunity/genetics , Immunity/physiology , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Jejunum/physiology , Lung/physiology , Male , Pregnancy , Real-Time Polymerase Chain Reaction/veterinary , Transcriptome , Tumor Necrosis Factor-alpha/metabolism
13.
PLoS One ; 10(7): e0133234, 2015.
Article in English | MEDLINE | ID: mdl-26226343

ABSTRACT

Periodic feed restriction is used in cattle production to reduce feed costs. When normal feed levels are resumed, cattle catch up to a normal weight by an acceleration of normal growth rate, known as compensatory growth, which is not yet fully understood. Illumina Miseq Phylogenetic marker amplicon sequencing of DNA extracted from rumen contents of 55 bulls showed that restriction of feed (70% concentrate, 30% grass silage) for 125 days, to levels that caused a 60% reduction of growth rate, resulted in a large increase of relative abundance of Methanobrevibacter gottschalkii clade (designated as OTU-M7), and a large reduction of an uncharacterised Succinivibrionaceae species (designated as OTU-S3004). There was a strong negative Spearman correlation (ρ = -0.72, P = <1x10(-20)) between relative abundances of OTU-3004 and OTU-M7 in the liquid rumen fraction. There was also a significant increase in acetate:propionate ratio (A:P) in feed restricted animals that showed a negative Spearman correlation (ρ = -0.69, P = <1x10(-20)) with the relative abundance of OTU-S3004 in the rumen liquid fraction but not the solid fraction, and a strong positive Spearman correlation with OTU-M7 in the rumen liquid (ρ = 0.74, P = <1x10(-20)) and solid (ρ = 0.69, P = <1x10(-20)) fractions. Reduced A:P ratios in the rumen are associated with increased feed efficiency and reduced production of methane which has a global warming potential (GWP 100 years) of 28. Succinivibrionaceae growth in the rumen was previously suggested to reduce methane emissions as some members of this family utilise hydrogen, which is also utilised by methanogens for methanogenesis, to generate succinate which is converted to propionate. Relative abundance of OTU-S3004 showed a positive Spearman correlation with propionate (ρ = 0.41, P = <0.01) but not acetate in the liquid rumen fraction.


Subject(s)
Cattle/microbiology , Methanobrevibacter/genetics , Methanobrevibacter/isolation & purification , Succinivibrionaceae/genetics , Succinivibrionaceae/isolation & purification , Animal Feed , Animals , Cattle/growth & development , Cattle/physiology , DNA, Archaeal/genetics , DNA, Archaeal/isolation & purification , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Fatty Acids, Volatile/metabolism , Food Deprivation/physiology , Gastrointestinal Microbiome/genetics , Male , Methane/biosynthesis , Methanobrevibacter/metabolism , Models, Animal , Phylogeny , Rumen/metabolism , Rumen/microbiology , Succinivibrionaceae/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...