Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13209, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851835

ABSTRACT

Hypertension remains a leading cause of cardiovascular and kidney diseases. Failure to control blood pressure with ≥ 3 medications or control requiring ≥ 4 medications is classified as resistant hypertension (rHTN) and new therapies are needed to reduce the resulting increased risk of morbidity and mortality. Here, we report genetic evidence that relaxin family peptide receptor 2 (RXFP2) is associated with rHTN in men, but not in women. This study shows that adrenal gland gene expression of RXFP2 is increased in men with hypertension and the RXFP2 natural ligand, INSL3, increases adrenal steroidogenesis and corticosteroid secretion in human adrenal cells. To address the hypothesis that RXFP2 activation is an important mechanism in rHTN, we discovered and characterized small molecule and monoclonal antibody (mAb) blockers of RXFP2. The novel chemical entities and mAbs show potent, selective inhibition of RXFP2 and reduce aldosterone and cortisol synthesis and release. The RXFP2 mAbs have suitable rat pharmacokinetic profiles to evaluate the role of RXFP2 in the development and maintenance of rHTN. Overall, we identified RXFP2 activity as a potential new mechanism in rHTN and discovered RXFP2 antagonists for the future interrogation of RXFP2 in cardiovascular and renal diseases.


Subject(s)
Hypertension , Receptors, G-Protein-Coupled , Receptors, Peptide , Humans , Male , Hypertension/drug therapy , Hypertension/genetics , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Animals , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Receptors, Peptide/antagonists & inhibitors , Rats , Female , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Adrenal Glands/metabolism , Adrenal Glands/drug effects , Drug Resistance/genetics , Antihypertensive Agents/pharmacology , Aldosterone/metabolism
2.
BMC Biol ; 20(1): 182, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986286

ABSTRACT

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Subject(s)
Crohn Disease , Tumor Necrosis Factor Inhibitors , Antigens, Nuclear/genetics , Antigens, Nuclear/metabolism , Crohn Disease/genetics , Crohn Disease/metabolism , Cytokines/genetics , Cytokines/metabolism , Epigenesis, Genetic , Humans , Macrophages , Transcription Factors/genetics
4.
Nat Commun ; 8: 16081, 2017 07 17.
Article in English | MEDLINE | ID: mdl-28714473

ABSTRACT

The identification and prioritization of chemically tractable therapeutic targets is a significant challenge in the discovery of new medicines. We have developed a novel method that rapidly screens multiple proteins in parallel using DNA-encoded library technology (ELT). Initial efforts were focused on the efficient discovery of antibacterial leads against 119 targets from Acinetobacter baumannii and Staphylococcus aureus. The success of this effort led to the hypothesis that the relative number of ELT binders alone could be used to assess the ligandability of large sets of proteins. This concept was further explored by screening 42 targets from Mycobacterium tuberculosis. Active chemical series for six targets from our initial effort as well as three chemotypes for DHFR from M. tuberculosis are reported. The findings demonstrate that parallel ELT selections can be used to assess ligandability and highlight opportunities for successful lead and tool discovery.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Drug Discovery/methods , Gene Library , Mycobacterium tuberculosis/drug effects , Small Molecule Libraries , Staphylococcus aureus/drug effects , Acinetobacter baumannii/metabolism , Drug Evaluation, Preclinical , Molecular Targeted Therapy , Mycobacterium tuberculosis/metabolism , Staphylococcus aureus/metabolism
5.
J Med Chem ; 59(15): 7299-304, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27379833

ABSTRACT

Undecaprenyl pyrophosphate synthase (UppS) is an essential enzyme in bacterial cell wall synthesis. Here we report the discovery of Staphylococcus aureus UppS inhibitors from an Encoded Library Technology screen and demonstrate binding to the hydrophobic substrate site through cocrystallography studies. The use of bacterial strains with regulated uppS expression and inhibitor resistant mutant studies confirmed that the whole cell activity was the result of UppS inhibition, validating UppS as a druggable antibacterial target.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Anti-Bacterial Agents/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pyrazoles/pharmacology , Staphylococcus aureus/drug effects , Alkyl and Aryl Transferases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Staphylococcus aureus/enzymology , Structure-Activity Relationship
6.
ACS Med Chem Lett ; 6(8): 888-93, 2015 Aug 13.
Article in English | MEDLINE | ID: mdl-26288689

ABSTRACT

The aggrecan degrading metalloprotease ADAMTS-4 has been identified as a novel therapeutic target for osteoarthritis. Here, we use DNA-encoded Library Technology (ELT) to identify novel ADAMTS-4 inhibitors from a DNA-encoded triazine library by affinity selection. Structure-activity relationship studies based on the selection information led to the identification of potent and highly selective inhibitors. For example, 4-(((4-(6,7-dimethoxy-3,4-dihydroisoquinolin-2(1H)-yl)-6-(((4-methylpiperazin-1-yl)methyl)amino)-1,3,5-triazin-2-yl)amino)methyl)-N-ethyl-N-(m-tolyl)benzamide has IC50 of 10 nM against ADAMTS-4, with >1000-fold selectivity over ADAMT-5, MMP-13, TACE, and ADAMTS-13. These inhibitors have no obvious zinc ligand functionality.

7.
J Med Chem ; 57(4): 1276-88, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24450589

ABSTRACT

Tuberculosis (TB) is one of the world's oldest and deadliest diseases, killing a person every 20 s. InhA, the enoyl-ACP reductase from Mycobacterium tuberculosis, is the target of the frontline antitubercular drug isoniazid (INH). Compounds that directly target InhA and do not require activation by mycobacterial catalase peroxidase KatG are promising candidates for treating infections caused by INH resistant strains. The application of the encoded library technology (ELT) to the discovery of direct InhA inhibitors yielded compound 7 endowed with good enzymatic potency but with low antitubercular potency. This work reports the hit identification, the selected strategy for potency optimization, the structure-activity relationships of a hundred analogues synthesized, and the results of the in vivo efficacy studies performed with the lead compound 65.


Subject(s)
Antitubercular Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Drug Discovery , Mycobacterium tuberculosis/drug effects , Oxidoreductases/antagonists & inhibitors , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Mycobacterium tuberculosis/metabolism , Spectrometry, Mass, Electrospray Ionization
8.
J Med Chem ; 55(16): 7061-79, 2012 Aug 23.
Article in English | MEDLINE | ID: mdl-22891645

ABSTRACT

The metalloprotease ADAMTS-5 is considered a potential target for the treatment of osteoarthritis. To identify selective inhibitors of ADAMTS-5, we employed encoded library technology (ELT), which enables affinity selection of small molecule binders from complex mixtures by DNA tagging. Selection of ADAMTS-5 against a four-billion member ELT library led to a novel inhibitor scaffold not containing a classical zinc-binding functionality. One exemplar, (R)-N-((1-(4-(but-3-en-1-ylamino)-6-(((2-(thiophen-2-yl)thiazol-4-yl)methyl)amino)-1,3,5-triazin-2-yl)pyrrolidin-2-yl)methyl)-4-propylbenzenesulfonamide (8), inhibited ADAMTS-5 with IC(50) = 30 nM, showing >50-fold selectivity against ADAMTS-4 and >1000-fold selectivity against ADAMTS-1, ADAMTS-13, MMP-13, and TACE. Extensive SAR studies showed that potency and physicochemical properties of the scaffold could be further improved. Furthermore, in a human osteoarthritis cartilage explant study, compounds 8 and 15f inhibited aggrecanase-mediated (374)ARGS neoepitope release from aggrecan and glycosaminoglycan in response to IL-1ß/OSM stimulation. This study provides the first small molecule evidence for the critical role of ADAMTS-5 in human cartilage degradation.


Subject(s)
ADAM Proteins/antagonists & inhibitors , Cartilage, Articular/drug effects , Databases, Chemical , Osteoarthritis/pathology , Sulfonamides/chemical synthesis , Triazines/chemical synthesis , ADAMTS5 Protein , Aggrecans/metabolism , Animals , Cartilage, Articular/metabolism , Cartilage, Articular/pathology , Endopeptidases/metabolism , Epitopes , Glycosaminoglycans/metabolism , Humans , In Vitro Techniques , Male , Middle Aged , Osteoarthritis/drug therapy , Rats , Rats, Sprague-Dawley , Small Molecule Libraries , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/pharmacokinetics , Sulfonamides/pharmacology , Triazines/pharmacokinetics , Triazines/pharmacology
9.
Nat Chem Biol ; 5(9): 647-54, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19648931

ABSTRACT

Biochemical combinatorial techniques such as phage display, RNA display and oligonucleotide aptamers have proven to be reliable methods for generation of ligands to protein targets. Adapting these techniques to small synthetic molecules has been a long-sought goal. We report the synthesis and interrogation of an 800-million-member DNA-encoded library in which small molecules are covalently attached to an encoding oligonucleotide. The library was assembled by a combination of chemical and enzymatic synthesis, and interrogated by affinity selection. We describe methods for the selection and deconvolution of the chemical display library, and the discovery of inhibitors for two enzymes: Aurora A kinase and p38 MAP kinase.


Subject(s)
DNA/chemistry , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Small Molecule Libraries/chemical synthesis , Animals , Aurora Kinases , Combinatorial Chemistry Techniques , DNA/genetics , Models, Molecular , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors
10.
Bioorg Med Chem Lett ; 16(18): 4931-5, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16809033

ABSTRACT

Guanidine-based peptide nucleic acid (GPNA) monomers and oligomers containing all four natural (adenine (A), cytosine (C), guanine (G), and thymine (T)) and two unnatural (2-thiouracil (sU) and 2,6-diaminopurine (D)) nucleobases have been synthesized. Thermal denaturation study showed that GPNA oligomers containing alternate D-backbone configuration bind sequence-specifically to DNA and, when incubated with mammalian cells, localized specifically to the endoplasmic reticulum (ER).


Subject(s)
Cell Membrane/drug effects , Peptide Nucleic Acids/chemical synthesis , Peptide Nucleic Acids/pharmacology , Cell Membrane Permeability , Chromatography, High Pressure Liquid , HeLa Cells , Humans , Molecular Structure , Nucleic Acid Hybridization , Peptide Nucleic Acids/chemistry , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...