Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 48(19): 10615-10631, 2020 11 04.
Article in English | MEDLINE | ID: mdl-32776089

ABSTRACT

Lowering of prion protein (PrP) expression in the brain is a genetically validated therapeutic hypothesis in prion disease. We recently showed that antisense oligonucleotide (ASO)-mediated PrP suppression extends survival and delays disease onset in intracerebrally prion-infected mice in both prophylactic and delayed dosing paradigms. Here, we examine the efficacy of this therapeutic approach across diverse paradigms, varying the dose and dosing regimen, prion strain, treatment timepoint, and examining symptomatic, survival, and biomarker readouts. We recapitulate our previous findings with additional PrP-targeting ASOs, and demonstrate therapeutic benefit against four additional prion strains. We demonstrate that <25% PrP suppression is sufficient to extend survival and delay symptoms in a prophylactic paradigm. Rise in both neuroinflammation and neuronal injury markers can be reversed by a single dose of PrP-lowering ASO administered after the detection of pathological change. Chronic ASO-mediated suppression of PrP beginning at any time up to early signs of neuropathology confers benefit similar to constitutive heterozygous PrP knockout. Remarkably, even after emergence of frank symptoms including weight loss, a single treatment prolongs survival by months in a subset of animals. These results support ASO-mediated PrP lowering, and PrP-lowering therapeutics in general, as a promising path forward against prion disease.


Subject(s)
Oligonucleotides, Antisense/therapeutic use , Prion Diseases/therapy , Prion Proteins/genetics , RNAi Therapeutics/methods , Animals , Brain/metabolism , Brain/pathology , Cell Line , Mice , Mice, Inbred C57BL , Oligonucleotides, Antisense/chemistry , Prion Proteins/metabolism
2.
Mol Cell Proteomics ; 18(12): 2388-2400, 2019 12.
Article in English | MEDLINE | ID: mdl-31558565

ABSTRACT

Therapies currently in preclinical development for prion disease seek to lower prion protein (PrP) expression in the brain. Trials of such therapies are likely to rely on quantification of PrP in cerebrospinal fluid (CSF) as a pharmacodynamic biomarker and possibly as a trial endpoint. Studies using PrP ELISA kits have shown that CSF PrP is lowered in the symptomatic phase of disease, a potential confounder for reading out the effect of PrP-lowering drugs in symptomatic patients. Because misfolding or proteolytic cleavage could potentially render PrP invisible to ELISA even if its concentration were constant or increasing in disease, we sought to establish an orthogonal method for CSF PrP quantification. We developed a multi-species targeted mass spectrometry method based on multiple reaction monitoring (MRM) of nine PrP tryptic peptides quantified relative to an isotopically labeled recombinant protein standard for human samples, or isotopically labeled synthetic peptides for nonhuman species. Analytical validation experiments showed process replicate coefficients of variation below 15%, good dilution linearity and recovery, and suitable performance for both CSF and brain homogenate and across humans as well as preclinical species of interest. In n = 55 CSF samples from individuals referred to prion surveillance centers with rapidly progressive dementia, all six human PrP peptides, spanning the N- and C-terminal domains of PrP, were uniformly reduced in prion disease cases compared with individuals with nonprion diagnoses. Thus, lowered CSF PrP concentration in prion disease is a genuine result of the disease process and not an artifact of ELISA-based measurement. As a result, dose-finding studies for PrP lowering drugs may need to be conducted in presymptomatic at-risk individuals rather than in symptomatic patients. We provide a targeted mass spectrometry-based method suitable for preclinical quantification of CSF PrP as a tool for drug development.


Subject(s)
Mass Spectrometry/methods , Prion Proteins/cerebrospinal fluid , Animals , Drug Development , Enzyme-Linked Immunosorbent Assay , Humans , Macaca fascicularis , Mice , Prion Diseases/cerebrospinal fluid , Prion Diseases/drug therapy , Rats
3.
JCI Insight ; 52019 07 30.
Article in English | MEDLINE | ID: mdl-31361599

ABSTRACT

Prion disease is a fatal, incurable neurodegenerative disease of humans and other mammals caused by conversion of cellular prion protein (PrP; PrPC) into a self-propagating neurotoxic conformer (prions; PrPSc). Strong genetic proofs of concept support lowering PrP expression as a therapeutic strategy. Antisense oligonucleotides (ASOs) can provide a practical route to lowering one target mRNA in the brain, but their development for prion disease has been hindered by three unresolved questions from prior work: uncertainty about mechanism of action, unclear potential for efficacy against established prion infection, and poor tolerability of drug delivery by osmotic pumps. Here we test antisense oligonucleotides (ASOs) delivered by bolus intracerebroventricular injection to intracerebrally prion-infected wild-type mice. Prophylactic treatments given every 2-3 months extended survival times 61-98%, and a single injection at 120 days post-infection, near the onset of clinical signs, extended survival 55% (87 days). In contrast, a non-targeting control ASO was ineffective. Thus, PrP lowering is the mechanism of action of ASOs effective against prion disease in vivo, and infrequent, or even single, bolus injections of ASOs can slow prion neuropathogenesis and markedly extend survival, even when initiated near clinical signs. These findings should empower development of PrP-lowering therapy for prion disease.


Subject(s)
Oligonucleotides, Antisense/pharmacology , Oligonucleotides, Antisense/therapeutic use , Prion Diseases/drug therapy , Animals , Brain/pathology , Disease Models, Animal , Drug Discovery , Female , Genetic Therapy , Mice , Mice, Inbred C57BL , Prion Diseases/pathology , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL
...