Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(4): e0123623, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37404012

ABSTRACT

Prochlorococcus is an abundant photosynthetic bacterium in the open ocean, where nitrogen (N) often limits phytoplankton growth. In the low-light-adapted LLI clade of Prochlorococcus, nearly all cells can assimilate nitrite (NO2-), with a subset capable of assimilating nitrate (NO3-). LLI cells are maximally abundant near the primary NO2- maximum layer, an oceanographic feature that may, in part, be due to incomplete assimilatory NO3- reduction and subsequent NO2- release by phytoplankton. We hypothesized that some Prochlorococcus exhibit incomplete assimilatory NO3- reduction and examined NO2- accumulation in cultures of three Prochlorococcus strains (MIT0915, MIT0917, and SB) and two Synechococcus strains (WH8102 and WH7803). Only MIT0917 and SB accumulated external NO2- during growth on NO3-. Approximately 20-30% of the NO3- transported into the cell by MIT0917 was released as NO2-, with the rest assimilated into biomass. We further observed that co-cultures using NO3- as the sole N source could be established for MIT0917 and Prochlorococcus strain MIT1214 that can assimilate NO2- but not NO3-. In these co-cultures, the NO2- released by MIT0917 is efficiently consumed by its partner strain, MIT1214. Our findings highlight the potential for emergent metabolic partnerships that are mediated by the production and consumption of N cycle intermediates within Prochlorococcus populations. IMPORTANCE Earth's biogeochemical cycles are substantially driven by microorganisms and their interactions. Given that N often limits marine photosynthesis, we investigated the potential for N cross-feeding within populations of Prochlorococcus, the numerically dominant photosynthetic cell in the subtropical open ocean. In laboratory cultures, some Prochlorococcus cells release extracellular NO2- during growth on NO3-. In the wild, Prochlorococcus populations are composed of multiple functional types, including those that cannot use NO3- but can still assimilate NO2-. We show that metabolic dependencies arise when Prochlorococcus strains with complementary NO2- production and consumption phenotypes are grown together on NO3-. These findings demonstrate the potential for emergent metabolic partnerships, possibly modulating ocean nutrient gradients, that are mediated by cross-feeding of N cycle intermediates.


Subject(s)
Prochlorococcus , Synechococcus , Nitrites/metabolism , Nitrogen Dioxide/metabolism , Nitrates/metabolism , Synechococcus/genetics , Phytoplankton
2.
Limnol Oceanogr ; 66(9): 3300-3312, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34690365

ABSTRACT

The picocyanobacteria Prochlorococcus and Synechococcus are found throughout the ocean's euphotic zone, where the daily light:dark cycle drives their physiology. Periodic deep mixing events can, however, move cells below this region, depriving them of light for extended periods of time. Here, we demonstrate that members of these genera can adapt to tolerate repeated periods of light energy deprivation. Strains kept in the dark for 3 d and then returned to the light initially required 18-26 d to resume growth, but after multiple rounds of dark exposure they began to regrow after only 1-2 d. This dark-tolerant phenotype was stable and heritable; some cultures retained the trait for over 132 generations even when grown in a standard 13:11 light:dark cycle. We found no genetic differences between the dark-tolerant and parental strains of Prochlorococcus NATL2A, indicating that an epigenetic change is likely responsible for the adaptation. To begin to explore this possibility, we asked whether DNA methylation-one potential mechanism mediating epigenetic inheritance in bacteria-occurs in Prochlorococcus. LC-MS/MS analysis showed that while DNA methylations, including 6 mA and 5 mC, are found in some other Prochlorococcus strains, there were no methylations detected in either the parental or dark-tolerant NATL2A strains. These findings suggest that Prochlorococcus utilizes a yet-to-be-determined epigenetic mechanism to adapt to the stress of extended light energy deprivation, and highlights phenotypic heterogeneity as an additional dimension of Prochlorococcus diversity.

SELECTION OF CITATIONS
SEARCH DETAIL
...