Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 30(14): 3006-3022, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38687588

ABSTRACT

PURPOSE: Bispecific antibodies (BsAb) directed against B-cell maturation antigen (teclistamab) or the orphan G protein-coupled receptor GPRC5D (talquetamab) induce deep and durable responses in heavily pretreated patients with multiple myeloma. However, mechanisms underlying primary and acquired resistance remain poorly understood. EXPERIMENTAL DESIGN: The anti-multiple myeloma activity of teclistamab and talquetamab was evaluated in bone marrow (BM) samples from patients with multiple myeloma. T-cell phenotype and function were assessed in BM/peripheral blood samples obtained from patients with multiple myeloma who were treated with these BsAb. RESULTS: In ex vivo killing assays with 41 BM samples from BsAb-naive patients with multiple myeloma, teclistamab- and talquetamab-mediated multiple myeloma lysis was strongly correlated (r = 0.73, P < 0.0001). Both BsAb exhibited poor activity in samples with high regulatory T-cell (Treg) numbers and a low T-cell/multiple myeloma cell ratio. Furthermore, comprehensive phenotyping of BM samples derived from patients treated with teclistamab or talquetamab revealed that high frequencies of PD-1+ CD4+ T cells, CTLA4+ CD4+ T cells, and CD38+ CD4+ T cells were associated with primary resistance. Although this lack of response was linked to a modest increase in the expression of inhibitory receptors, increasing T-cell/multiple myeloma cell ratios by adding extra T cells enhanced sensitivity to BsAb. Further, treatment with BsAb resulted in an increased proportion of T cells expressing exhaustion markers (PD-1, TIGIT, and TIM-3), which was accompanied by reduced T-cell proliferative potential and cytokine secretion, as well as impaired antitumor efficacy in ex vivo experiments. CONCLUSIONS: Primary resistance is characterized by a low T-cell/multiple myeloma cell ratio and Treg-driven immunosuppression, whereas reduced T-cell fitness due to continuous BsAb-mediated T-cell activation may contribute to the development of acquired resistance.


Subject(s)
Antibodies, Bispecific , Drug Resistance, Neoplasm , Multiple Myeloma , Multiple Myeloma/immunology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Humans , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Drug Resistance, Neoplasm/immunology , B-Cell Maturation Antigen/immunology , T-Lymphocytes, Regulatory/immunology , Female , Male , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Middle Aged , Aged , Receptors, G-Protein-Coupled
2.
Hemasphere ; 7(5): e881, 2023 May.
Article in English | MEDLINE | ID: mdl-37153876

ABSTRACT

The CD38-targeting antibody daratumumab has marked activity in multiple myeloma (MM). Natural killer (NK) cells play an important role during daratumumab therapy by mediating antibody-dependent cellular cytotoxicity via their FcγRIII receptor (CD16), but they are also rapidly decreased following initiation of daratumumab treatment. We characterized the NK cell phenotype at baseline and during daratumumab monotherapy by flow cytometry and cytometry by time of flight to assess its impact on response and development of resistance (DARA-ATRA study; NCT02751255). At baseline, nonresponding patients had a significantly lower proportion of CD16+ and granzyme B+ NK cells, and higher frequency of TIM-3+ and HLA-DR+ NK cells, consistent with a more activated/exhausted phenotype. These NK cell characteristics were also predictive of inferior progression-free survival and overall survival. Upon initiation of daratumumab treatment, NK cells were rapidly depleted. Persisting NK cells exhibited an activated and exhausted phenotype with reduced expression of CD16 and granzyme B, and increased expression of TIM-3 and HLA-DR. We observed that addition of healthy donor-derived purified NK cells to BM samples from patients with either primary or acquired daratumumab-resistance improved daratumumab-mediated MM cell killing. In conclusion, NK cell dysfunction plays a role in primary and acquired daratumumab resistance. This study supports the clinical evaluation of daratumumab combined with adoptive transfer of NK cells.

SELECTION OF CITATIONS
SEARCH DETAIL