Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Anat ; 242(2): 312-326, 2023 02.
Article in English | MEDLINE | ID: mdl-36087281

ABSTRACT

In limbless fossorial vertebrates such as caecilians (Gymnophiona), head-first burrowing imposes severe constraints on the morphology and overall size of the head. As such, caecilians developed a unique jaw-closing system involving the large and well-developed m. interhyoideus posterior, which is positioned in such a way that it does not significantly increase head diameter. Caecilians also possess unique muscles among amphibians. Understanding the diversity in the architecture and size of the cranial muscles may provide insights into how a typical amphibian system was adapted for a head-first burrowing lifestyle. In this study, we use dissection and non-destructive contrast-enhanced micro-computed tomography (µCT) scanning to describe and compare the cranial musculature of 13 species of caecilians. Our results show that the general organization of the head musculature is rather constant across extant caecilians. However, the early-diverging Rhinatrema bivittatum mainly relies on the 'ancestral' amphibian jaw-closing mechanism dominated by the m. adductores mandibulae, whereas other caecilians switched to the use of the derived dual jaw-closing mechanism involving the additional recruitment of the m. interhyoideus posterior. Additionally, the aquatic Typhlonectes show a greater investment in hyoid musculature than terrestrial caecilians, which is likely related to greater demands for ventilating their large lungs, and perhaps also an increased use of suction feeding. In addition to three-dimensional interactive models, our study provides the required quantitative data to permit the generation of accurate biomechanical models allowing the testing of further functional hypotheses.


Subject(s)
Amphibians , Skull , Animals , Phylogeny , X-Ray Microtomography , Amphibians/anatomy & histology , Skull/anatomy & histology , Muscle, Skeletal
2.
J Exp Biol ; 225(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35662342

ABSTRACT

Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.


Subject(s)
Amphibians , Skull , Amphibians/physiology , Animals , Head , Spine
3.
J Anat ; 241(3): 716-728, 2022 09.
Article in English | MEDLINE | ID: mdl-35488423

ABSTRACT

Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used µCT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.


Subject(s)
Amphibians , Spine , Amphibians/anatomy & histology , Animals , Spine/anatomy & histology , Spine/diagnostic imaging
4.
J Exp Biol ; 225(1)2022 01 01.
Article in English | MEDLINE | ID: mdl-34897477

ABSTRACT

Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.


Subject(s)
Amphibians , Bite Force , Amphibians/physiology , Animals , Biomechanical Phenomena , Head , Jaw/physiology , Muscle, Skeletal , Skull
5.
J Exp Biol ; 224(18)2021 09 15.
Article in English | MEDLINE | ID: mdl-34494653

ABSTRACT

Caecilians are elongate, limbless and annulated amphibians that, with the exception of one aquatic family, all have an at least partly fossorial lifestyle. It has been suggested that caecilian evolution resulted in sturdy and compact skulls with fused bones and tight sutures, as an adaptation to their head-first burrowing habits. However, although their cranial osteology is well described, relationships between form and function remain poorly understood. In the present study, we explored the relationship between cranial shape and in vivo burrowing forces. Using micro-computed tomography (µCT) data, we performed 3D geometric morphometrics to explore whether cranial and mandibular shapes reflected patterns that might be associated with maximal push forces. The results highlight important differences in maximal push forces, with the aquatic Typhlonectes producing a lower force for a given size compared with other species. Despite substantial differences in head morphology across species, no relationship between overall skull shape and push force could be detected. Although a strong phylogenetic signal may partly obscure the results, our conclusions confirm previous studies using biomechanical models and suggest that differences in the degree of fossoriality do not appear to be driving the evolution of head shape.


Subject(s)
Amphibians , Skull , Animals , Biological Evolution , Body Weights and Measures , Phylogeny , X-Ray Microtomography
6.
J Exp Biol ; 217(Pt 11): 1983-92, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24577443

ABSTRACT

In vivo bone strain data are the most direct evidence of deformation and strain regimes in the vertebrate cranium during feeding and can provide important insights into skull morphology. Strain data have been collected during feeding across a wide range of mammals; in contrast, in vivo cranial bone strain data have been collected from few sauropsid taxa. Here we present bone strain data recorded from the jugal of the herbivorous agamid lizard Uromastyx geyri along with simultaneously recorded bite force. Principal and shear strain magnitudes in Uromastyx geyri were lower than cranial bone strains recorded in Alligator mississippiensis, but higher than those reported from herbivorous mammals. Our results suggest that variations in principal strain orientations in the facial skeleton are largely due to differences in feeding behavior and bite location, whereas food type has little impact on strain orientations. Furthermore, mean principal strain orientations differ between male and female Uromastyx during feeding, potentially because of sexual dimorphism in skull morphology.


Subject(s)
Bite Force , Lizards/anatomy & histology , Mastication/physiology , Skull/anatomy & histology , Stress, Mechanical , Animals , Biomechanical Phenomena , Feeding Behavior , Female , Male , Sex Factors
7.
J Exp Biol ; 210(Pt 4): 655-67, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17267651

ABSTRACT

Many plethodontid salamanders project their tongues ballistically at high speed and for relatively great distances. Capturing evasive prey relies on the tongue reaching the target in minimum time, therefore it is expected that power production, or the rate of energy release, is maximized during tongue launch. We examined the dynamics of tongue projection in three genera of plethodontids (Bolitoglossa, Hydromantes and Eurycea), representing three independent evolutionary transitions to ballistic tongue projection, by using a combination of high speed imaging, kinematic and inverse dynamics analyses and electromyographic recordings from the tongue projector muscle. All three taxa require high-power output of the paired tongue projector muscles to produce the observed kinematics. Required power output peaks in Bolitoglossa at values that exceed the greatest maximum instantaneous power output of vertebrate muscle that has been reported by more than an order of magnitude. The high-power requirements are likely produced through the elastic storage and recovery of muscular kinetic energy. Tongue projector muscle activity precedes the departure of the tongue from the mouth by an average of 117 ms in Bolitoglossa, sufficient time to load the collagenous aponeuroses within the projector muscle with potential energy that is subsequently released at a faster rate during tongue launch.


Subject(s)
Feeding Behavior/physiology , Muscle Contraction/physiology , Tongue/physiology , Urodela/physiology , Animals , Biomechanical Phenomena , Electromyography , Microscopy, Confocal , Species Specificity , Tongue/anatomy & histology , Urodela/anatomy & histology , Video Recording
8.
Physiol Biochem Zool ; 79(1): 31-42, 2006.
Article in English | MEDLINE | ID: mdl-16380926

ABSTRACT

Because selection on juvenile life-history stages is likely strong, disproportionately high levels of performance (e.g., sprint speed, endurance, etc.) might be expected. Whereas this phenomenon has been demonstrated with respect to locomotor performance, data for feeding are scarce. Here, we investigate the relationships among body dimensions, head dimensions, and bite force during growth in lizards and turtles. We also investigate whether ontogenetic changes in bite performance are related to changes in diet. Our analyses show that, for turtles, head dimensions generally increase with negative allometry. For lizards, heads scale as expected for geometrically growing systems. Bite force generally increased isometrically with carapace length in turtles but showed significant positive allometry relative to body dimensions in lizards. However, both lizards and turtles display positive allometric scaling of bite force relative to some measures of head size throughout ontogeny, suggesting (1) strong selection for increased relative bite performance with increasing head size and (2) intrinsic changes in the geometry and/or mass of the jaw adductors during growth. Whereas our data generally do not provide strong evidence of compensation for lower absolute levels of performance, they do show strong links among morphology, bite force, and diet during growth.


Subject(s)
Bite Force , Lizards/growth & development , Lizards/physiology , Turtles/growth & development , Turtles/physiology , Animals , Biomechanical Phenomena , Body Size , Diet , Feeding Behavior , Head/anatomy & histology , Head/growth & development , Jaw/anatomy & histology , Jaw/physiology , Lizards/anatomy & histology , Turtles/anatomy & histology
9.
Zoology (Jena) ; 108(2): 107-20, 2005.
Article in English | MEDLINE | ID: mdl-16351959

ABSTRACT

In the present study, we exposed 53 animals from 23 different species of amphibians and reptiles to microgravity (mug). This nearly doubles the number of amphibians and reptiles observed so far in mug. The animals were flown on a parabolic flight, which provided 20-25s of mug, to better characterize behavioral reactions to abrupt exposure to mug. Highly fossorial limbless caecilians and amphisbaenians showed relatively limited movement in mug. Limbed quadrupedal reptiles that were non-arboreal in the genera Leiocephalus, Anolis, and Scincella showed the typical righting response and enormous amounts of body motion and tail rotation, which we interpreted as both righting responses and futile actions to grasp the substrate. Both arboreal and non-arboreal geckos in the genera Uroplatus, Palmatogecko, Stenodactylus, Tarentola, and Eublepharis instead showed a skydiving posture previously reported for highly arboreal anurans. Some snakes, in the genera Thamnophis and Elaphe, which typically thrashed and rolled in mug, managed to knot their own bodies with their tails and immediately became quiescent. This suggests that these reptiles gave stable physical contact, which would indicate that they were not falling, primacy over vestibular input that indicated that they were in freefall. The fact that they became quiet upon self-embrace further suggests a failure to distinguish self from non-self. The patterns of behavior seen in amphibians and reptiles in mug can be explained in light of their normal ecology and taxonomic relations.


Subject(s)
Amphibians/physiology , Gravity Sensing/physiology , Hypogravity , Motor Activity/physiology , Reptiles/physiology , Animals , Species Specificity
10.
Zoology (Jena) ; 108(2): 155-67, 2005.
Article in English | MEDLINE | ID: mdl-16351963

ABSTRACT

Studies of the scaling of feeding movements in vertebrates have included three species that display both near-geometric growth and isometry of kinematic variables. These scaling characteristics allow one to examine the "pure" relationship of growth and movement. Despite similar growth patterns, the feeding movements of toads (Bufo) slow down more with increasing body size than those of bass (Micropterus), and sharks (Ginglymostoma). This variation might be due to major differences in the mechanism of prey capture; the bass and sharks use suction to capture prey in water, while the toad uses tongue prehension to capture prey on land. To investigate whether or not these different scaling patterns are correlated with differences in feeding mechanics, we examined the ontogenetic scaling of prey capture movements in the hellbender salamander (Cryptobranchus alleganiensis), which also has near-geometric growth. The hellbender suction feeds in the same general manner as the teleosts and shark, but is much more closely related to the toad. The feeding movements of the hellbender scale more similarly to the feeding movements of toads than to those of fishes or sharks, indicating that phylogenetic relatedness rather than biomechanical similarity predicts ontogenetic scaling patterns of movement.


Subject(s)
Feeding Behavior/physiology , Mouth/physiology , Phylogeny , Urodela/growth & development , Urodela/physiology , Age Factors , Animals , Biomechanical Phenomena , Body Weights and Measures , Least-Squares Analysis , Urodela/genetics , Video Recording
11.
J Exp Biol ; 207(Pt 1): 21-31, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14638829

ABSTRACT

High-speed videography and muscle denervation experiments were used to elucidate the mechanism of tongue protraction in the microhylid frog Phrynomantis bifasciatus. Unlike most frogs, Phrynomantis has the ability to protract the tongue through a lateral arc of over 200 degrees in the frontal plane. Thus, the tongue can be aimed side to side, independently of head and jaw movements. Denervation experiments demonstrate that the m. genioglossus complex controls lateral tongue aiming with a hydrostatic mechanism. After unilateral denervation of the m. genioglossus complex, the tongue can only be protracted towards the denervated (inactive) side and the range through which the tongue can be aimed is reduced by 75%. Histological sections of the tongue reveal a compartment of perpendicularly arranged muscle fibers, the m. genioglossus dorsoventralis. This compartment, in conjunction with the surrounding connective tissue, generates hydrostatic pressure that powers tongue movements in Phrynomantis. A survey of aiming abilities in 17 additional species of microhylid frogs, representing a total of 12 genera and six subfamilies, indicates that hydrostatic tongues are found throughout this family. Among frogs, this mechanism of tongue protraction was previously known only in Hemisus and may represent a synapomorphy of Hemisus and Microhylidae.


Subject(s)
Anura/physiology , Feeding Behavior/physiology , Tongue/anatomy & histology , Tongue/physiology , Animals , Biomechanical Phenomena , Denervation , Histological Techniques , Hypoglossal Nerve/physiology , Tongue/innervation , Trigeminal Nerve/physiology , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...