Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 432: 128604, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35306410

ABSTRACT

Road sediment is a pervasive environmental medium that acts as both source and sink for a variety of natural and anthropogenic particles and often is enriched in heavy metals. Road sediment is generally understudied in the United States (U.S.) relative to other environmental media and compared to countries such as China and the United Kingdom (U.K.). However, the U.S. is an ideal target for these studies due to the diverse climates and wealth of geochemical, socioeconomic, demographic, and health data. This review outlines the existing U.S. road sediment literature while also providing key international perspectives and context. Furthermore, the most comprehensive table of U.S. road sediment studies to date is presented, which includes elemental concentrations, sample size, size fraction, collection and analytical methods, as well as digestion procedure. Overall, there were observed differences in studies by sampling time period for elemental concentrations, but not necessarily by climate in the U.S. Other key concepts addressed in this road sediment review include the processes controlling its distribution, the variety of nomenclature used, anthropogenic enrichment of heavy metals, electron microscopy, health risk assessments, remediation, and future directions of road sediment investigations. Going forward, it is recommended that studies with a higher geographic diversity are performed that consider smaller cities and rural areas. Furthermore, environmental justice must be a focus as community science studies of road sediment can elucidate pollution issues impacting areas of high need. Finally, this review calls for consistency in sampling, data reporting, and nomenclature to effectively expand work on understudied elements, particles, and background sediments.


Subject(s)
Environmental Science , Metals, Heavy , China , Cities , Dust/analysis , Environmental Monitoring/methods , Environmental Pollution , Geologic Sediments , Metals, Heavy/analysis , Risk Assessment , United States
2.
Article in English | MEDLINE | ID: mdl-34501644

ABSTRACT

Lead (Pb) soil contamination in urban environments represents a considerable health risk for exposed populations, which often include environmental justice communities. In Philadelphia, Pennsylvania (PA), Pb pollution is a major concern primarily due to extensive historical Pb-smelting/processing activity and legacy use of Pb-based paints and leaded gasoline. The U.S. Environmental Protection Agency (USEPA) organized and/or compiled community-driven soil sampling campaigns to investigate Pb content in surface soils across Philadelphia. Using these data (n = 1277), combined with our own dataset (n = 1388), we explored the spatial distribution of Pb content in soils across the city using ArcGIS. While assessing Zone Improvement Plan (ZIP)-code level data, we found strong correlations between factors, such as the percentage of children with elevated blood lead levels (% EBLL) and % minority population as well as between % EBLL and % children in poverty. We developed a "Lead Index" that took demographics, median measured Pb-in-soil content, and % EBLLs into account to identify ZIP codes in need of further assessment. Our results will be used to help lower the Pb-exposure risk for vulnerable children living in disproportionately burdened communities.


Subject(s)
Lead , Soil Pollutants , Child , Demography , Environmental Health , Humans , Lead/analysis , Philadelphia , Soil Pollutants/analysis
3.
Environ Monit Assess ; 193(7): 440, 2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34164717

ABSTRACT

A multi-analytical geochemical investigation of Pb-contaminated collocated road dust and soils, at two size fractions, was performed in Fishtown, Philadelphia, PA, USA. The combinations of methods employed in this case study were chosen to better characterize the contamination, enhance identification of pollution sources, improve understanding of the impact of former Pb smelters, and to study the relationships between two media and between two size fractions. High concentrations of Cu and Sn were observed in both bulk and finer road dust, whereas large concentrations of Zn and Pb were found in both bulk and finer soil samples, implying pollution. There were no obvious associations between Pb soil concentrations and former smelter locations. Therefore, the primary source of the high mean Pb content in bulk (595 ppm) and fine soils (687 ppm) was likely legacy lead paint and/or leaded-gasoline products. Using electron microscopy, we found that Pb particles were mainly 0.1-10 µm in diameter and were ubiquitous in both soil and dust samples. Two-way analysis of variance tests revealed that, for most chemical elements explored here, there were statistically significant differences in concentrations based on media and size fractions, with finer sizes being more polluted than the bulk. The mineralogical composition and the sources of several pollutant elements (Cr, Cu, Zn, Pb), however, were similar for both soil and dust, pointing to material exchange between the two media. We suggest that future investigations of collocated road dust and soils in urban environments use the methodologies applied in this study to obtain detailed insights into sources of roadside pollution and the relationships between neighboring media.


Subject(s)
Metals, Heavy , Soil Pollutants , Dust/analysis , Environmental Monitoring , Lead , Metals, Heavy/analysis , Philadelphia , Soil , Soil Pollutants/analysis
4.
Eur J Mineral ; 33(1): 77-112, 2021.
Article in English | MEDLINE | ID: mdl-33840909

ABSTRACT

In this paper, we present the results of a multi-analytical characterization of a glaucophane sample collected in the Piedmont region of northwestern Italy. Investigation methods included optical microscopy, powder X-ray diffraction, Fourier-transform infrared spectroscopy, µ-Raman spectroscopy, Mössbauer spectroscopy, electron probe microanalysis, environmental scanning electron microscopy and energy-dispersive X-ray spectroscopy, and scanning/transmission electron microscopy combined with energy-dispersive X-ray spectroscopy and electron energy-loss spectroscopy. In addition to the crystal-chemical characterization of the sample from the mesoscale to the near-atomic scale, we have also conducted an extended study on the morphology and dimensions of the mineral particles. The main finding is that studying the same particle population at different magnifications yields different results for mineral habit, dimensions, and dimensional distributions. As glaucophane may occur as an elongate mineral particle (e.g., asbestiform glaucophane occurrences in California and Nevada), the observed discrepancies therefore need to be considered when assessing potential breathability of such particles, with implications for future regulations on elongate mineral particles. While the sample preparation and particle counting methods are not directly investigated in this work, our findings suggest that different magnifications should be used when characterizing an elongate mineral particle population, irrespective of whether or not it contains asbestiform material. These results further reveal the need for developing improved regulation for elongate mineral particles. We thus propose a simple methodology to merge the datasets collected at different magnifications to provide a more complete description and a better risk evaluation of the studied particle population.

5.
Sci Total Environ ; 750: 141202, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32853929

ABSTRACT

Pollution from heavy metals in urban environments is a topic of growing concern because many metals, including Pb and Cr, are a human health hazard. Exposure to Pb and Cr has been linked to the inhibition of neurological development as well as toxic effects on many organs. Yellow traffic paint (YTP) is a mixture that contains organic polymers, binders, and pigments, which in some cases consist of crocoite (PbCrO4) that may be coated by silica. The primary aim of this study was to investigate the behavior of the crocoite pigment grains within YTP and their silica coatings in simulated environmental and human body conditions. To do this, both YTP and asphalt were collected in Philadelphia, PA, USA. These samples as well as a standard PbCrO4 were investigated with powder X-ray diffraction, X-ray fluorescence, environmental scanning electron microscopy (ESEM), transmission electron microscopy, and energy-dispersive X-ray spectroscopy. Using this multi-analytical approach, mineral phases were determined in the YTP, their shape, dimensional distributions, crystallinity, and chemical composition, as well as elemental distributions before and after experimental interactions. Three batch dissolution experiments with YTP, asphalt, and standard PbCrO4 were performed to simulate ingestion, inhalation, and environmental interaction with rainwater. Elemental releases were determined with inductively coupled plasma-optical emission spectrometry, and results indicated that little (ingestion) to no (environmental and inhalation) Pb and Cr were leached from the YTP during the three experimental procedures. This is likely due to the silica coating that encapsulates the crocoite particles, which persisted during all interactions. The ESEM results for YTP showed dimensional reductions after interactions with all three fluids. The silica coating must be further explored to determine how it breaks down in real environmental conditions.


Subject(s)
Metals, Heavy , Paint , Environmental Monitoring , Environmental Pollution/analysis , Humans , Metals, Heavy/analysis , Silicon Dioxide , Spectrometry, X-Ray Emission
6.
Environ Sci Pollut Res Int ; 27(13): 14883-14902, 2020 May.
Article in English | MEDLINE | ID: mdl-32060827

ABSTRACT

Road dust was investigated within Philadelphia, a major United States city with a long history of industrial activities, in order to determine pollution levels. Almost all of the investigated minor elements were enriched relative to the continental crust. Furthermore, mean concentrations of Cr, Co, Cu, and Pb were high compared with those reported in cities in other countries. Lead pollution should be investigated further in Philadelphia, where 8 of the 30 sample sites, including those heavily trafficked by civilians, were at or above the EPA's child safety threshold for Pb in bare soil. High Spearman correlations between Zn and Cu, Zn and Cr, Cu and Cr, and Sn and V, as well as factor analysis of minor elements suggests that the primary sources of these elements were anthropogenic. Potential sources included the breakdown of alloys, non-exhaust traffic emissions, paint, smelting, and industry. We found that higher organic content in road dust may be related to higher traffic densities, which could be due to tire-wear particles. Additionally, higher mean concentrations of Fe, Cr, Cu, and Zn were found at sites with elevated traffic densities. Land use impacted some of the elements not influenced by traffic density, including Co, Sn, and Pb. Bulk mineral content was similar across different land uses and traffic densities and, thus, did not appear to be influenced by these factors. Our research emphasized the complexity of road dust and utilized a more comprehensive approach than many previous studies. This study established fundamental groundwork for future risk assessment in Philadelphia, as it identified several key pollutants in the city. Overall, this assessment serves as an informative reference point for other formerly heavily industrialized cities in the USA and abroad.


Subject(s)
Dust/analysis , Metals, Heavy/analysis , Child , Cities , Environmental Monitoring , Environmental Pollution/analysis , Humans , Philadelphia , Pregnancy , Risk Assessment , United States
7.
Minerals (Basel) ; 8(12)2018 Dec.
Article in English | MEDLINE | ID: mdl-31572620

ABSTRACT

In nature, asbestos is often associated with minerals and other non-asbestiform morphologies thought to be harmless, but not much is known about the potential toxic effects of these phases. Therefore, the characterization of natural assemblages should not be limited to asbestos fibers only. This paper combines a multi-analytical characterization of asbestos from Valmalenco (Italy) with data from dissolution experiments conducted in a simulated interstitial lung fluid (Gamble's solution), and a detailed dimensional study that compares the particle population before and after this interaction. The sample is identified as a tremolitic amphibole, exhibiting a predominance of fiber and prismatic habits at lower magnification, but a bladed habit at higher magnification. The results show that at different magnification, the dimensional and habit distributions are notably different. After the dissolution experiments, the sample showed rounded edges and pyramid-shaped dissolution pits. Chemical analyses suggested that a nearly stoichiometric logarithmic loss of Si and Mg occurred associated with a relatively intense release of Ca in the first 24 h, whereas Fe was probably redeposited on the fiber surfaces. A rearrangement of the more frequent habits and dimensions was recorded after the dissolution experiment, with a peculiar increase of the proportion of elongated mineral particles.

SELECTION OF CITATIONS
SEARCH DETAIL
...