Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Cell Infect Microbiol ; 13: 1113744, 2023.
Article in English | MEDLINE | ID: mdl-37475964

ABSTRACT

Introduction: Tuberculosis (TB) still kills over 1 million people annually. The only approved vaccine, BCG, prevents disseminated disease in children but shows low efficacy at preventing pulmonary TB. Myeloid dendritic cells (mDCs) are promising targets for vaccines and immunotherapies to combat infectious diseases due to their essential role in linking innate and adaptive immune responses. DCs undergo metabolic reprogramming following exposure to TLR agonists, which is thought to be a prerequisite for a successful host response to infection. We hypothesized that metabolic rewiring also plays a vital role in the maturation and migration of DCs stimulated with BCG. Consequently, we investigated the role of glycolysis in the activation of primary human myeloid CD1c+ DCs in response to BCG. Methods/results: We show that CD1c+ mDC mature and acquire a more energetic phenotype upon challenge with BCG. Pharmacological inhibition of glycolysis with 2-deoxy-D-glucose (2-DG) decreased cytokine secretion and altered cell surface expression of both CD40 and CCR7 on BCG-challenged, compared to untreated, mDCs. Furthermore, inhibition of glycolysis had differential effects on infected and uninfected bystander mDCs in BCG-challenged cultures. For example, CCR7 expression was increased by 2-DG treatment following challenge with BCG and this increase in expression was seen only in BCG-infected mDCs. Moreover, although 2-DG treatment inhibited CCR7-mediated migration of bystander CD1C+ DCs in a transwell assay, migration of BCG-infected cells proceeded independently of glycolysis. Discussion: Our results provide the first evidence that glycolysis plays divergent roles in the maturation and migration of human CD1c+ mDC exposed to BCG, segregating with infection status. Further investigation of cellular metabolism in DC subsets will be required to determine whether glycolysis can be targeted to elicit better protective immunity against Mtb.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Child , Humans , BCG Vaccine , Receptors, CCR7/metabolism , Cytokines/metabolism , Dendritic Cells
2.
J Clin Invest ; 133(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36757797

ABSTRACT

Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves the transformation of infected phagolysosomes from a site of killing into a nutrient-rich replicative niche. Here, we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis, 1-tuberculosinyladenosine (1-TbAd), caused lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing M. tuberculosis, caused intralysosomal and peribacillary lipid storage patterns that matched both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters and that 1-TbAd increased M. tuberculosis growth under conditions of restricted lipid access in macrophages. Furthermore, lipidomics identified 1-TbAd-induced lipid substrates that define Gaucher's disease, Wolman's disease, and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of M. tuberculosis-induced lysosomal failure, leading to successful testing of an agonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Terpenes , Nucleosides , Macrophages/microbiology , Lipids , Lysosomes
3.
Pharmaceutics ; 14(8)2022 Aug 21.
Article in English | MEDLINE | ID: mdl-36015371

ABSTRACT

Developing new effective treatment strategies to overcome the rise in multi-drug resistant tuberculosis cases (MDR-TB) represents a global challenge. A host-directed therapy (HDT), acting on the host immune response rather than Mtb directly, could address these resistance issues. We developed an HDT for targeted TB treatment, using All Trans Retinoic Acid (ATRA)-loaded nanoparticles (NPs) that are suitable for nebulization. Efficacy studies conducted on THP-1 differentiated cells infected with the H37Ra avirulent Mycobacterium tuberculosis (Mtb) strain, have shown a dose-dependent reduction in H37Ra growth as determined by the BACT/ALERT® system. Confocal microscopy images showed efficient and extensive cellular delivery of ATRA-PLGA NPs into THP-1-derived macrophages. A commercially available vibrating mesh nebulizer was used to generate nanoparticle-loaded droplets with a mass median aerodynamic diameter of 2.13 µm as measured by cascade impaction, and a volumetric median diameter of 4.09 µm as measured by laser diffraction. In an adult breathing simulation experiment, 65.1% of the ATRA PLGA-NP dose was inhaled. This targeted inhaled HDT could offer a new adjunctive TB treatment option that could enhance current dosage regimens leading to better patient prognosis and a decreasing incidence of MDR-TB.

4.
Curr Res Immunol ; 3: 54-72, 2022.
Article in English | MEDLINE | ID: mdl-35496824

ABSTRACT

Tuberculosis (TB) is the top bacterial infectious disease killer and one of the top ten causes of death worldwide. The emergence of strains of multiple drug-resistant tuberculosis (MDR-TB) has pushed our available stock of anti-TB agents to the limit of effectiveness. This has increased the urgent need to develop novel treatment strategies using currently available resources. An adjunctive, host-directed therapy (HDT) designed to act on the host, instead of the bacteria, by boosting the host immune response through activation of intracellular pathways could be the answer. The integration of multidisciplinary approaches of repurposing currently FDA-approved drugs, with a targeted drug-delivery platform is a very promising option to reduce the long timeline associated with the approval of new drugs - time that cannot be afforded given the current levels of morbidity and mortality associated with TB infection. The deficiency of vitamin A has been reported to be highly associated with the increased susceptibility of TB. All trans retinoic acid (ATRA), the active metabolite of vitamin A, has proven to be very efficacious against TB both in vitro and in vivo. In this review, we discuss and summarise the importance of vitamin A metabolites in the fight against TB and what is known regarding the molecular mechanisms of ATRA as a host-directed therapy for TB including its effect on macrophages cytokine profile and cellular pathways. Furthermore, we focus on the issues behind why previous clinical trials with vitamin A supplementation have failed, and how these issues might be overcome.

5.
J Vis Exp ; (174)2021 08 16.
Article in English | MEDLINE | ID: mdl-34459817

ABSTRACT

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), was the most significant infectious disease killer globally until the advent of COVID-19. Mtb has evolved to persist in its intracellular environment, evade host defenses, and has developed resistance to many anti-tubercular drugs. One approach to solving resistance is identifying existing approved drugs that will boost the host immune response to Mtb. These drugs could then be repurposed as adjunctive host-directed therapies (HDT) to shorten treatment time and help overcome antibiotic resistance. Quantification of intracellular Mtb growth in macrophages is a crucial aspect of assessing potential HDT. The gold standard for measuring Mtb growth is counting colony-forming units (CFU) on agar plates. This is a slow, labor-intensive assay that does not lend itself to rapid screening of drugs. In this protocol, an automated, broth-based culture system, which is more commonly used to detect Mtb in clinical specimens, has been adapted for preclinical screening of host-directed therapies. The capacity of the liquid culture assay system to investigate intracellular Mtb growth in macrophages treated with HDT was evaluated. The HDTs tested for their ability to inhibit Mtb growth were all-trans Retinoic acid (AtRA), both in solution and encapsulated in poly(lactic-co-glycolic acid) (PLGA) microparticles and the combination of interferon-gamma and linezolid. The advantages of this automated liquid culture-based technique over the CFU method include simplicity of setup, less labor-intensive preparation, and faster time to results (5-12 days compared to 21 days or more for agar plates).


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Automation , Humans , Macrophages , Tuberculosis/drug therapy
6.
Front Immunol ; 11: 836, 2020.
Article in English | MEDLINE | ID: mdl-32477344

ABSTRACT

Tuberculosis is the single biggest infectious killer in the world and presents a major global health challenge. Antimicrobial therapy requires many months of multiple drugs and incidences of drug resistant tuberculosis continues to rise. Consequently, research is now focused on the development of therapies to support the function of infected immune cells. HIF1α-mediated induction of aerobic glycolysis is integral to the host macrophage response during infection with Mtb, as this promotes bacillary clearance. Some iron chelators have been shown to modulate cellular metabolism through the regulation of HIF1α. We examined if the iron chelator, desferrioxamine (DFX), could support the function of primary human macrophages infected with Mtb. Using RT-PCR, we found that DFX promoted the expression of key glycolytic enzymes in Mtb-infected primary human MDMs and human alveolar macrophages. Using Seahorse technology, we demonstrate that DFX enhances glycolytic metabolism in Mtb-stimulated human MDMs, while helping to enhance glycolysis during mitochondrial distress. Furthermore, the effect of DFX on glycolysis was not limited to Mtb infection as DFX also boosted glycolytic metabolism in uninfected and LPS-stimulated cells. DFX also supports innate immune function by inducing IL1ß production in human macrophages during early infection with Mtb and upon stimulation with LPS. Moreover, using hypoxia, Western blot and ChIP-qPCR analyses, we show that DFX modulates IL1ß levels in these cells in a HIF1α-mediated manner. Collectively, our data suggests that DFX exhibits potential to enhance immunometabolic responses and augment host immune function during early Mtb infection, in selected clinical settings.


Subject(s)
Deferoxamine/pharmacology , Macrophages, Alveolar/immunology , Macrophages, Alveolar/microbiology , Mycobacterium tuberculosis/immunology , Siderophores/pharmacology , Tuberculosis/immunology , Blood Donors , Cell Count , Cell Survival/drug effects , Cells, Cultured , Deferoxamine/metabolism , Glycolysis/drug effects , Host-Pathogen Interactions/immunology , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Interleukin-1beta/metabolism , Iron/metabolism , Macrophages, Alveolar/metabolism , Siderophores/metabolism , Signal Transduction/drug effects , Tuberculosis/microbiology
7.
Eur J Pharm Biopharm ; 134: 153-165, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30385419

ABSTRACT

Ending the tuberculosis (TB) epidemic by 2030 was recently listed in the United Nations (UN) Sustainable Development Goals alongside HIV/AIDS and malaria as it continues to be a major cause of death worldwide. With a significant proportion of TB cases caused by resistant strains of Mycobacterium tuberculosis (Mtb), there is an urgent need to develop new and innovative approaches to treatment. Since 1989, researchers have been assessing the anti-bacterial effects of the active metabolite of vitamin A, all trans-Retinoic acid (ATRA) solution, in Mtb models. More recently the antibacterial effect of ATRA has been shown to regulate the immune response to infection via critical gene expression, monocyte activation and the induction of autophagy leading to its application as a host-directed therapy (HDT). Inhalation is an attractive route for targeted treatment of TB, and therefore we have developed ATRA-loaded microparticles (ATRA-MP) within the inhalable size range (2.07 ±â€¯0.5 µm) offering targeted delivery of the encapsulated cargo (70.5 ±â€¯2.3%) to the site of action within the alveolar macrophage, which was confirmed by confocal microscopy. Efficient cellular delivery of ATRA was followed by a reduction in Mtb growth (H37Ra) in THP-1 derived macrophages evaluated by both the BACT/ALERT® system and enumeration of colony forming units (CFU). The antibacterial effect of ATRA-MP treatment was further assessed in BALB/c mice infected with the virulent strain of Mtb (H37Rv). ATRA-MP treatments significantly decreased the bacterial burden in the lungs alongside a reduction in pulmonary pathology following just three doses administered intratracheally. The immunomodulatory effects of targeted ATRA treatment in the lungs indicate a distinct yet effective mechanism of action amongst the formulations. This is the first study to-date of a controlled release ATRA treatment for TB suitable for inhalation that offers improved targeting of a HDT, retains antibacterial efficacy and improves pulmonary pathology compared to ATRA solution.


Subject(s)
Antitubercular Agents/administration & dosage , Drug Carriers/chemistry , Mycobacterium tuberculosis/drug effects , Tretinoin/administration & dosage , Tuberculosis, Pulmonary/drug therapy , Administration, Inhalation , Animals , Antitubercular Agents/pharmacokinetics , Delayed-Action Preparations/administration & dosage , Delayed-Action Preparations/pharmacokinetics , Disease Models, Animal , Drug Compounding/methods , Drug Liberation , Female , Humans , Macrophages, Alveolar/drug effects , Macrophages, Alveolar/metabolism , Mice , Mice, Inbred BALB C , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Pulmonary Alveoli/drug effects , Pulmonary Alveoli/metabolism , Pulmonary Alveoli/microbiology , Pulmonary Alveoli/pathology , THP-1 Cells , Treatment Outcome , Tretinoin/pharmacokinetics , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology
8.
Immunity ; 47(3): 552-565.e4, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28844797

ABSTRACT

Mycobacterium tuberculosis (Mtb) enters the host in aerosol droplets deposited in lung alveoli, where the bacteria first encounter lung-resident alveolar macrophages. We studied the earliest mycobacterium-macrophage interactions in the optically transparent zebrafish. First-responding resident macrophages phagocytosed and eradicated infecting mycobacteria, suggesting that to establish a successful infection, mycobacteria must escape out of the initially infected resident macrophage into growth-permissive monocytes. We defined a critical role for mycobacterial membrane phenolic glycolipid (PGL) in engineering this transition. PGL activated the STING cytosolic sensing pathway in resident macrophages, inducing the production of the chemokine CCL2, which in turn recruited circulating CCR2+ monocytes toward infection. Transient fusion of infected macrophages with CCR2+ monocytes enabled bacterial transfer and subsequent dissemination, and interrupting this transfer so as to prolong mycobacterial sojourn in resident macrophages promoted clearing of infection. Human alveolar macrophages produced CCL2 in a PGL-dependent fashion following infection, arguing for the potential of PGL-blocking interventions or PGL-targeting vaccine strategies in the prevention of tuberculosis. VIDEO ABSTRACT.


Subject(s)
Glycolipids/immunology , Macrophages/microbiology , Macrophages/physiology , Mycobacterium tuberculosis/immunology , Animals , Chemokine CCL2/metabolism , Chemotaxis/immunology , Cytokines/metabolism , Disease Models, Animal , Gene Knockout Techniques , Humans , Inflammation Mediators/metabolism , Macrophages, Alveolar/microbiology , Macrophages, Alveolar/physiology , Membrane Proteins/metabolism , Monocytes/immunology , Monocytes/metabolism , Monocytes/microbiology , Mutation , Mycobacterium tuberculosis/genetics , Organ Specificity/immunology , Tuberculosis/immunology , Tuberculosis/metabolism , Tuberculosis/microbiology , Zebrafish
9.
Adv Drug Deliv Rev ; 102: 33-54, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27151307

ABSTRACT

Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.


Subject(s)
Antitubercular Agents/therapeutic use , Drug Delivery Systems , Tuberculosis/therapy , Combined Modality Therapy , Drug Industry , Humans
10.
Cell ; 165(1): 139-152, 2016 Mar 24.
Article in English | MEDLINE | ID: mdl-27015311

ABSTRACT

A zebrafish genetic screen for determinants of susceptibility to Mycobacterium marinum identified a hypersusceptible mutant deficient in lysosomal cysteine cathepsins that manifests hallmarks of human lysosomal storage diseases. Under homeostatic conditions, mutant macrophages accumulate undigested lysosomal material, which disrupts endocytic recycling and impairs their migration to, and thus engulfment of, dying cells. This causes a buildup of unengulfed cell debris. During mycobacterial infection, macrophages with lysosomal storage cannot migrate toward infected macrophages undergoing apoptosis in the tuberculous granuloma. The unengulfed apoptotic macrophages undergo secondary necrosis, causing granuloma breakdown and increased mycobacterial growth. Macrophage lysosomal storage similarly impairs migration to newly infecting mycobacteria. This phenotype is recapitulated in human smokers, who are at increased risk for tuberculosis. A majority of their alveolar macrophages exhibit lysosomal accumulations of tobacco smoke particulates and do not migrate to Mycobacterium tuberculosis. The incapacitation of highly microbicidal first-responding macrophages may contribute to smokers' susceptibility to tuberculosis.


Subject(s)
Disease Susceptibility , Lysosomes/metabolism , Macrophages/immunology , Macrophages/pathology , Mycobacterium Infections/immunology , Mycobacterium Infections/pathology , Animals , Granuloma/metabolism , Macrophages/cytology , Macrophages, Alveolar/immunology , Mycobacterium marinum , Pulmonary Alveoli/immunology , Smoking , Transcription Factors/genetics , Transcription Factors/metabolism , Transport Vesicles/metabolism , Tuberculosis/immunology , Tuberculosis/pathology , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
11.
PLoS One ; 11(2): e0149167, 2016.
Article in English | MEDLINE | ID: mdl-26894562

ABSTRACT

The emergence of multiple-drug-resistant tuberculosis (MDR-TB) has pushed our available repertoire of anti-TB therapies to the limit of effectiveness. This has increased the urgency to develop novel treatment modalities, and inhalable microparticle (MP) formulations are a promising option to target the site of infection. We have engineered poly(lactic-co-glycolic acid) (PLGA) MPs which can carry a payload of anti-TB agents, and are successfully taken up by human alveolar macrophages. Even without a drug cargo, MPs can be potent immunogens; yet little is known about how they influence macrophage function in the setting of Mycobacterium tuberculosis (Mtb) infection. To address this issue we infected THP-1 macrophages with Mtb H37Ra or H37Rv and treated with MPs. In controlled experiments we saw a reproducible reduction in bacillary viability when THP-1 macrophages were treated with drug-free MPs. NFκB activity was increased in MP-treated macrophages, although cytokine secretion was unaltered. Confocal microscopy of immortalized murine bone marrow-derived macrophages expressing GFP-tagged LC3 demonstrated induction of autophagy. Inhibition of caspases did not influence the MP-induced restriction of bacillary growth, however, blockade of NFκB or autophagy with pharmacological inhibitors reversed this MP effect on macrophage function. These data support harnessing inhaled PLGA MP-drug delivery systems as an immunotherapeutic in addition to serving as a vehicle for targeted drug delivery. Such "added value" could be exploited in the generation of inhaled vaccines as well as inhaled MDR-TB therapeutics when used as an adjunct to existing treatments.


Subject(s)
Autophagy/drug effects , Cytotoxicity, Immunologic/drug effects , Lactic Acid/administration & dosage , Macrophages/drug effects , Macrophages/microbiology , Mycobacterium tuberculosis/immunology , NF-kappa B/metabolism , Polyglycolic Acid/administration & dosage , Animals , Caspases/metabolism , Cell Death/drug effects , Cell Death/immunology , Cell Line , Cytokines/biosynthesis , Humans , Macrophages/physiology , Mice , Phagocytosis , Polylactic Acid-Polyglycolic Acid Copolymer
12.
J Immunol ; 196(6): 2444-9, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26873991

ABSTRACT

Recent advances in immunometabolism link metabolic changes in stimulated macrophages to production of IL-1ß, a crucial cytokine in the innate immune response to Mycobacterium tuberculosis. To investigate this pathway in the host response to M. tuberculosis, we performed metabolic and functional studies on human alveolar macrophages, human monocyte-derived macrophages, and murine bone marrow-derived macrophages following infection with the bacillus in vitro. M. tuberculosis infection induced a shift from oxidative phosphorylation to aerobic glycolysis in macrophages. Inhibition of this shift resulted in decreased levels of proinflammatory IL-1ß and decreased transcription of PTGS2, increased levels of anti-inflammatory IL-10, and increased intracellular bacillary survival. Blockade or absence of IL-1R negated the impact of aerobic glycolysis on intracellular bacillary survival, demonstrating that infection-induced glycolysis limits M. tuberculosis survival in macrophages through induction of IL-1ß. Drugs that manipulate host metabolism may be exploited as adjuvants for future therapeutic and vaccination strategies.


Subject(s)
Immunity, Innate/immunology , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/microbiology , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/metabolism , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Glycolysis/immunology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Macrophages, Alveolar/immunology , Mice , Mice, Inbred C57BL , Mycobacterium tuberculosis/immunology , Real-Time Polymerase Chain Reaction , Tuberculosis, Pulmonary/microbiology
13.
Am J Respir Crit Care Med ; 190(12): 1430-6, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25390734

ABSTRACT

RATIONALE: Cigarette smoking is linked to important aspects of tuberculosis, such as susceptibility to infection, disease reactivation, mortality, transmission, and persistent infectiousness. The mechanistic basis for this remains poorly understood. OBJECTIVES: To compare the functional impairment seen in human alveolar macrophages (AM) from nonsmokers, smokers, and ex-smokers after infection with Mycobacterium tuberculosis (Mtb). METHODS: AM were acquired at bronchoscopy, and number and viability from smoking donors were compared with nonsmoking donors. AM were challenged in vitro with Mtb and intracellular bacterial viability was measured. Cytokine secretion was measured 24 hours postinfection by ELISA. Previously we determined the frequency of CD4(+)FoxP3(+) T cells in the presence or absence of allogeneic AM, and data were reanalyzed to separate the patient subjects according to smoking status. MEASUREMENTS AND MAIN RESULTS: There were significantly more AM from smokers compared with nonsmokers or ex-smokers (P < 0.01). AM from smokers could not control intracellular Mtb growth. Nonsmokers' AM generated significantly more tumor necrosis factor (TNF)-α, IFN-γ, and IL-1ß after Mtb infection compared with uninfected AM (P < 0.05). However, Mtb-infected AM from smokers did not secrete significantly more TNF-α, IFN-γ, and IL-1ß compared with uninfected smokers' AM. AM taken from ex-smokers also failed to secrete significantly increased TNF-α, IFN-γ, and IL-1ß after Mtb infection. Both smokers' and nonsmokers' AM induced FoxP3(+) T regulatory cell phenotype responses in allogeneic admixed T cells (>4.8 fold; P < 0.05). Even after Mtb infection, AM continued to drive this regulatory phenotype. CONCLUSIONS: In smokers, the pulmonary compartment has a number of macrophage-specific immune impairments that provide some mechanistic explanations whereby cigarette smoking renders a patient susceptible to tuberculosis infection and disease.


Subject(s)
Lung/immunology , Smoking/adverse effects , Tuberculosis, Pulmonary/etiology , Aged , Bronchoscopy , Case-Control Studies , Cytokines/physiology , Disease Susceptibility/etiology , Disease Susceptibility/immunology , Flow Cytometry , Humans , Immunity, Cellular , Lung/microbiology , Macrophages, Alveolar/physiology , Middle Aged , Mycobacterium tuberculosis/immunology , Tuberculosis, Pulmonary/immunology
14.
Toxicol Appl Pharmacol ; 264(3): 451-61, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22959926

ABSTRACT

Nanomaterials and their enabled products have increasingly been attracting global attention due to their unique physicochemical properties. Among these emerging products, silver nanowire (AgNW)-based thin films are being developed for their promising applications in next generation nanoelectronics and nanodevices. However, serious concerns remain about possible health and safety risks they may pose. Here, we employed a multi-modal systematic biocompatibility assessment of thin films incorporating AgNW. To represent the possible routes of nanomaterial entry during occupational or environmental exposure, we employed four different cell lines of epithelial, endothelial, gastric, and phagocytic origin. Utilizing a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we observed a low level of cytotoxicity of AgNW, which was dependent on cell type, nanowire lengths, doses and incubation times. Similarly, no major cytotoxic effects were induced by AgNW-containing thin films, as detected by conventional cell viability and imaging assays. However, transmission electron microscopy and Western immunoblotting analysis revealed AgNW-induced autophasosome accumulation together with an upregulation of the autophagy marker protein LC3. Autophagy represents a crucial mechanism in maintaining cellular homeostasis, and our data for the first time demonstrate triggering of such mechanism by AgNW in human phagocytic cells. Finally, atomic force microscopy revealed significant changes in the topology of cells attaching and growing on these films as substrates. Our findings thus emphasize the necessity of comprehensive biohazard assessment of nanomaterials in modern applications and devices and a thorough analysis of risks associated with their possible contact with humans through occupational or environmental exposure.


Subject(s)
Autophagy/drug effects , Biocompatible Materials/toxicity , Nanocomposites/toxicity , Nanowires/toxicity , Silver/toxicity , Animals , Biocompatible Materials/chemistry , Blotting, Western , Cell Line , Humans , Mice , Microscopy, Electron, Transmission , Nanocomposites/chemistry , Nanowires/chemistry , Silver/chemistry
15.
BMC Microbiol ; 11: 237, 2011 Oct 24.
Article in English | MEDLINE | ID: mdl-22024399

ABSTRACT

BACKGROUND: Dendritic cells (DCs) connect innate and adaptive immunity, and are necessary for an efficient CD4+ and CD8+ T cell response after infection with Mycobacterium tuberculosis (Mtb). We previously described the macrophage cell death response to Mtb infection. To investigate the effect of Mtb infection on human DC viability, we infected these phagocytes with different strains of Mtb and assessed viability, as well as DNA fragmentation and caspase activity. In parallel studies, we assessed the impact of infection on DC maturation, cytokine production and bacillary survival. RESULTS: Infection of DCs with live Mtb (H37Ra or H37Rv) led to cell death. This cell death proceeded in a caspase-independent manner, and without nuclear fragmentation. In fact, substrate assays demonstrated that Mtb H37Ra-induced cell death progressed without the activation of the executioner caspases, 3/7. Although the death pathway was triggered after infection, the DCs successfully underwent maturation and produced a host-protective cytokine profile. Finally, dying infected DCs were permissive for Mtb H37Ra growth. CONCLUSIONS: Human DCs undergo cell death after infection with live Mtb, in a manner that does not involve executioner caspases, and results in no mycobactericidal effect. Nonetheless, the DC maturation and cytokine profile observed suggests that the infected cells can still contribute to TB immunity.


Subject(s)
Cell Death , Dendritic Cells/microbiology , Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Caspase 3/metabolism , Caspase 7/metabolism , Cell Survival , Cells, Cultured , Cytokines/immunology , DNA Fragmentation , Dendritic Cells/immunology , Humans , Phagocytosis , Tuberculosis/microbiology
16.
J Clin Nurs ; 20(23-24): 3404-13, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21762425

ABSTRACT

AIM: To determine whether the provision of an information booklet on mobilisation improves early mobility postsurgical repair of hip fracture. BACKGROUND: Hip fracture among older people can have long-lasting consequences with the majority of patients failing to achieve their prefracture functional status. Early postoperative mobility may have a positive effect on long-term recovery. The importance of providing postoperative information on mobility has been highlighted. It is suggested that patients remain passive in their recovery when they do not understand the importance of mobilisation. DESIGN: The study used a pretest-post-test design of two treatments and a usual care control group. METHODS: Eighty-three adults postsurgical repair of hip fracture, aged 65 years and older, were recruited to the study. Participants were assigned to one of three groups, a usual care group, treatment group 1 (T(1)) usual care plus basic information booklet or treatment group 2 (T(2)) usual care plus detailed information booklet. Data collection three days postsurgery and prior to discharge included the Mini-Mental State Examination, a Demographic Questionnaire, the Elderly Mobility Scale and a Numerical Pain Scale. RESULTS: Greatest improvements in Elderly Mobility Scale scores occurred in T(1), with least changes observed in T(2). Changes did not reach significance level (p=0·105). CONCLUSION: The results of the study suggest that the provision of basic information is preferable and highlights a deficiency of education in usual care. RELEVANCE TO CLINICAL PRACTICE: Hip fracture patients should be provided with an educational booklet containing basic information on mobility to promote optimal recovery.


Subject(s)
Hip Fractures/physiopathology , Aged , Humans , Postoperative Period
17.
Mol Pharm ; 8(4): 1100-12, 2011 Aug 01.
Article in English | MEDLINE | ID: mdl-21591762

ABSTRACT

With an ever increasing number of particulate drug delivery systems being developed for the intracellular delivery of therapeutics a robust high-throughput method for studying particle-cell interactions is urgently required. Current methods used for analyzing particle-cell interaction include spectrofluorimetry, flow cytometry, and fluorescence/confocal microscopy, but these methods are not high throughput and provide only limited data on the specific number of particles delivered intracellularly to the target cell. The work herein presents an automated high-throughput method to analyze microparticulate drug delivery system (DDS) uptake byalveolar macrophages. Poly(lactic-co-glycolic acid) (PLGA) microparticles were prepared in a range of sizes using a solvent evaporation method. A human monocyte cell line (THP-1) was differentiated into macrophage like cells using phorbol 12-myristate 13-acetate (PMA), and cells were treated with microparticles for 1 h and studied using confocal laser scanning microscopy (CLSM), spectrofluorimetry and a high-content analysis (HCA). PLGA microparticles within the size range of 0.8-2.1 µm were found to be optimal for macrophage targeting (p < 0.05). Uptake studies carried out at 37 °C and 4 °C indicated that microparticles were internalized in an energy dependent manner. To improve particle uptake, a range of opsonic coatings were assessed. Coating PLGA particles with gelatin and ovalbumin was found to significantly increase particle uptake from 2.75 ± 0.98 particles per cell for particles coated with gelatin. Opsonic coating also significantly increased particle internalization into primary human alveolar macrophages (p < 0.01) with a 1.7-fold increase in uptake from 4.19 ± 0.48 for uncoated to 7.53 ± 0.88 particles per cell for coated particles. In comparison to techniques such as spectrofluorimetry and CLSM, HCA provides both qualitative and quantitative data on the influence of carrier design on cell targeting that can be gathered in a high-throughput format and therefore has great potential in the screening of intracellularly targeted DDS.


Subject(s)
Drug Delivery Systems/methods , Macrophages, Alveolar/metabolism , Cell Line , Humans , Lactic Acid/chemistry , Microscopy, Confocal , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Spectrometry, Fluorescence , Tetradecanoylphorbol Acetate/chemistry
18.
Tuberculosis (Edinb) ; 91(1): 86-92, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20888298

ABSTRACT

Inhaled therapies in the form of drugs or vaccines for tuberculosis treatment were reported about a decade ago. Experts around the world met to discuss the scientific progress in inhaled therapies at the international symposium "Optimization of inhaled Tuberculosis therapies and implications for host-pathogen interactions" held in New Delhi, India on November 3-5, 2009. The meeting was organized by the Central Drug Research Institute (CDRI) Lucknow, India. The lung is the main route for infection with Mycobacterium tuberculosis bacilli and the primary site of reactivation of latent disease. The only available vaccine BCG is relatively ineffective at preventing tuberculosis disease and current therapy requires prolonged treatment with drugs which results in low patient compliance. Consequently, there is a need to design new vaccines and therapies for this disease. Recently there has been increased interest in the development of inhaled formulations to deliver anti-mycobacterial drugs and vaccines directly to the lung and many of these therapies are designed to target lung macrophages and dendritic cells. However, the development of effective inhaled therapies requires an understanding of the unique function and immunosuppressive environment of the lung which is driven, in part, by alveolar macrophages and dendritic cells. In this review, we will discuss the role of alveolar macrophages and dendritic cells in the host immune response to M. tuberculosis infection and the ways in which inhaled therapies might enhance the anti-microbial response of phagocytes and boost pulmonary immunity.


Subject(s)
Antitubercular Agents/administration & dosage , Dendritic Cells/drug effects , Host-Pathogen Interactions , Macrophages, Alveolar/drug effects , Tuberculosis/drug therapy , Administration, Inhalation , Antitubercular Agents/pharmacology , Dendritic Cells/immunology , Humans , Macrophages, Alveolar/immunology , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/genetics , Tuberculosis/microbiology
19.
Am J Respir Cell Mol Biol ; 45(1): 172-80, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20889800

ABSTRACT

Successful phagolysosomal maturation is an important innate immune response to intracellular infection. However, Mycobacterium tuberculosis (Mtb) can manipulate and inhibit this host response to ensure survival within its niche cell. We investigate the role of the anti-inflammatory cytokine IL-10 on Mtb-phagosome maturation. Blocking IL-10, which was secreted from Mtb-infected macrophages, allowed phagosome maturation to proceed. Macrophage cytokine gene expression profiles were not significantly altered by blocking IL-10 3 hours after infection with Mtb. We demonstrate that IL-10 can regulate this protective phenotype in phorbol myristate acetate (PMA)-treated THP-1 cells, monocyte-derived macrophages (MDMs), and human alveolar macrophages (AMs) infected with Mtb. The regulatory effect of endogenous IL-10 was evident in macrophages infected with virulent Mtb H37Rv, as well as in attenuated strains of mycobacteria. Unlike live Mtb, dead bacilli occupy a mature, acidic phagosome. However, the addition of IL-10 to cells infected with killed Mtb successfully inhibited the maturation of this compartment. Importantly, we demonstrate that the addition of IL-10 to MDMs results in enhanced mycobacterial survival and growth. Our results suggest that IL-10 exerts its effects on this early macrophage response in a partly signal transducer and activator of transcription 3 (STAT3)-dependent manner, and independent of mitogen activated protein kinase p38 (MAPKp38) and extracellular regulated kinase 1/2 (ERK1/2) activity. IL-10 is a feature of human tuberculous granuloma, and these new findings support the hypothesis that this cytokine can promote pathogen persistence by contributing to Mtb-phagosome maturation arrest in human macrophages.


Subject(s)
Interleukin-10/metabolism , Macrophages , Mycobacterium tuberculosis/growth & development , Phagosomes , Tuberculosis , Carcinogens/pharmacology , Cell Line , Granuloma/metabolism , Granuloma/microbiology , Granuloma/pathology , Humans , Macrophages/metabolism , Macrophages/microbiology , Macrophages/pathology , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Phagosomes/metabolism , Phagosomes/microbiology , Phagosomes/pathology , STAT3 Transcription Factor/metabolism , Tetradecanoylphorbol Acetate/pharmacology , Tuberculosis/metabolism , Tuberculosis/microbiology , Tuberculosis/pathology , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Infect Immun ; 76(1): 351-60, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17954721

ABSTRACT

Human macrophages infected with Mycobacterium tuberculosis may undergo apoptosis. Macrophage apoptosis contributes to the innate immune response against M. tuberculosis by containing and limiting the growth of mycobacteria and also by depriving the bacillus of its niche cell. Apoptosis of infected macrophages is well documented; however, bystander apoptosis of uninfected macrophages has not been described in the setting of M. tuberculosis. We observed that uninfected human macrophages underwent significant bystander apoptosis 48 and 96 h after they came into contact with macrophages infected with avirulent M. tuberculosis. The bystander apoptosis was significantly greater than the background apoptosis observed in uninfected control cells cultured for the same length of time. There was no evidence of the involvement of tumor necrosis factor alpha, Fas, tumor necrosis factor-related apoptosis-inducing ligand, transforming growth factor beta, Toll-like receptor 2, or MyD88 in contact-mediated bystander apoptosis. This newly described phenomenon may further limit the spread of M. tuberculosis by eliminating the niche cells on which the bacillus relies.


Subject(s)
Apoptosis , Macrophages/cytology , Macrophages/microbiology , Mycobacterium tuberculosis/physiology , Cell Communication , Cell Line, Tumor , Enzyme Inhibitors/pharmacology , Humans , Macrophages/drug effects , Myeloid Differentiation Factor 88/metabolism , Neutrophils/microbiology , Neutrophils/physiology , Staurosporine/pharmacology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Toll-Like Receptor 2/metabolism , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , fas Receptor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL