Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569608

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) affects about 20-40% of the adult population in high-income countries and is now a leading indication for liver transplantation and can lead to hepatocellular carcinoma. The link between gut microbiota dysbiosis and NAFLD is now clearly established. Through analyses of the gut microbiota with shotgun metagenomics, we observe that compared to healthy controls, Adlercreutzia equolifaciens is depleted in patients with liver diseases such as NAFLD. Its abundance also decreases as the disease progresses and eventually disappears in the last stages indicating a strong association with disease severity. Moreover, we show that A. equolifaciens possesses anti-inflammatory properties, both in vitro and in vivo in a humanized mouse model of NAFLD. Therefore, our results demonstrate a link between NAFLD and the severity of liver disease and the presence of A. equolifaciens and its anti-inflammatory actions. Counterbalancing dysbiosis with this bacterium may be a promising live biotherapeutic strategy for liver diseases.


Subject(s)
Gastrointestinal Microbiome , Liver Neoplasms , Metabolic Diseases , Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Dysbiosis/microbiology , Liver/metabolism , Metabolic Diseases/metabolism , Liver Neoplasms/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism
2.
Cancer Discov ; 12(4): 1070-1087, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35031549

ABSTRACT

Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.


Subject(s)
Gastrointestinal Microbiome , Animals , Bacteria , Fecal Microbiota Transplantation , Humans , Mice , Polyphenols/pharmacology , Polyphenols/therapeutic use
3.
Surg Obes Relat Dis ; 16(7): 852-862, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32360114

ABSTRACT

BACKGROUND: Bariatric surgery is an effective therapeutic procedure for morbidly obese patients. The 2 most common interventions are sleeve gastrectomy (SG) and laparoscopic Roux-en-Y gastric bypass (LRYGB). OBJECTIVES: The aim of this study was to compare microbiome long-term microbiome after SG and LRYGB surgery in obese patients. SETTING: University Hospital, France; University Hospital, United States; and University Hospital, Switzerland. METHODS: Eighty-nine and 108 patients who underwent SG and LRYGB, respectively, were recruited. Stools were collected before and 6 months after surgery. Microbial DNA was analyzed with shotgun metagenomic sequencing (SOLiD 5500 xl Wildfire). MSPminer, a novel innovative tool to characterize new in silico biological entities, was used to identify 715 Metagenomic Species Pan-genome. One hundred forty-eight functional modules were analyzed using GOmixer and KEGG database. RESULTS: Both interventions resulted in a similar increase of Shannon's diversity index and gene richness of gut microbiota, in parallel with weight loss, but the changes of microbial composition were different. LRYGB led to higher relative abundance of aero-tolerant bacteria, such as Escherichia coli and buccal species, such as Streptococcus and Veillonella spp. In contrast, anaerobes, such as Clostridium, were more abundant after SG, suggesting better conservation of anaerobic conditions in the gut. Enrichment of Akkermansia muciniphila was also observed after both surgeries. Function-level changes included higher potential for bacterial use of supplements, such as vitamin B12, B1, and iron upon LRYGB. CONCLUSION: Microbiota changes after bariatric surgery depend on the nature of the intervention. LRYGB induces greater taxonomic and functional changes in gut microbiota than SG. Possible long-term health consequences of these alterations remain to be established.


Subject(s)
Gastric Bypass , Gastrointestinal Microbiome , Laparoscopy , Obesity, Morbid , France , Gastrectomy , Humans , Obesity, Morbid/surgery , Switzerland
SELECTION OF CITATIONS
SEARCH DETAIL
...