Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 28.
Article in English | MEDLINE | ID: mdl-38892038

ABSTRACT

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Subject(s)
B7-H1 Antigen , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone Deacetylases , Melanoma, Experimental , Melanoma , N-Acetylgalactosamine-4-Sulfatase , Animals , Humans , Mice , N-Acetylgalactosamine-4-Sulfatase/metabolism , N-Acetylgalactosamine-4-Sulfatase/genetics , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Histone Deacetylases/metabolism , Histone Deacetylases/genetics , Cell Line, Tumor , Melanoma, Experimental/metabolism , Melanoma, Experimental/pathology , Melanoma, Experimental/genetics , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Galectin 3/metabolism , Galectin 3/genetics , Promoter Regions, Genetic , Blood Proteins , Galectins
3.
Sci Adv ; 10(7): eadi5501, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38354243

ABSTRACT

Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.


Subject(s)
Osteoarthritis , Vascular Endothelial Growth Factor A , Animals , Vascular Endothelial Growth Factor A/metabolism , Osteoarthritis/drug therapy , Osteoarthritis/etiology , Osteoarthritis/metabolism , Pain/drug therapy , Pain/etiology , Knee Joint/metabolism , Arthralgia , Disease Models, Animal
4.
Gene ; 893: 147920, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37890601

ABSTRACT

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Subject(s)
Hyperalgesia , Osteoarthritis , Animals , Mice , Disease Models, Animal , Hyperalgesia/genetics , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Osteoarthritis/metabolism , Pain/complications , Pain/genetics , Quality of Life , Vascular Endothelial Growth Factor A/genetics
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Article in English | MEDLINE | ID: mdl-37813168

ABSTRACT

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Subject(s)
Melanoma , N-Acetylgalactosamine-4-Sulfatase , Skin Neoplasms , Animals , Humans , Mice , Chondroitin Sulfates/metabolism , Melanoma/drug therapy , N-Acetylgalactosamine-4-Sulfatase/genetics , N-Acetylgalactosamine-4-Sulfatase/metabolism , Signal Transduction , Skin Neoplasms/drug therapy , Melanoma, Cutaneous Malignant
6.
Int J Biol Sci ; 19(2): 675-690, 2023.
Article in English | MEDLINE | ID: mdl-36632459

ABSTRACT

Pain is the major reason that patients suffering from osteoarthritis (OA) seek medical care. We found that vascular endothelial growth factors (VEGFs) mediate signaling in OA pain pathways. To determine the specific contributions of VEGFs and their receptors (VEGFRs) to joint pathology and pain transmission during OA progression, we studied intra-articular (IA) injections of VEGF ligands into murine knee joints. Only VEGF ligands specific for the activation of VEGFR1, but not VEGFR2, induced allodynia within 30 min. Interventions in OA by inhibitors of VEGFRs were done in vivo using a preclinical murine OA model by IA injections of selective inhibitors of VEGFR1/VEGFR2 kinase (pazopanib) or VEGFR2 kinase (vandetanib). OA phenotypes were evaluated using pain-associated murine behavioral tests and histopathologic analyses. Alterations in VEGF/VEGFR signaling by drugs were determined in knee joints, dorsal root ganglia, and spinal cord by immunofluorescence microscopy. Pazopanib immediately relieved OA pain by interfering with pain transmission pathways. Pain reduction by vandetanib was mainly due to the inhibition of cartilage degeneration by suppressing VEGFR2 expression. In conclusion, IA administration of pazopanib, which simultaneously inhibits VEGFR1 and VEGFR2, can be developed as an ideal OA disease-modifying drug that rapidly reduces joint pain and simultaneously inhibits cartilage degeneration.


Subject(s)
Molecular Targeted Therapy , Osteoarthritis , Receptors, Vascular Endothelial Growth Factor , Vascular Endothelial Growth Factors , Animals , Mice , Osteoarthritis/drug therapy , Osteoarthritis/metabolism , Pain/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Vascular Endothelial Growth Factors/antagonists & inhibitors
7.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292950

ABSTRACT

Tropomyosin receptor kinase A (TrkA/NTRK1) is a high-affinity receptor for nerve growth factor (NGF), a potent pain mediator. NGF/TrkA signaling elevates synovial sensory neuronal distributions in the joints and causes osteoarthritis (OA) pain. We investigated the mechanisms of pain transmission as to whether peripheral sensory neurons are linked to the cellular plasticity in the dorsal root ganglia (DRG) and are critical for OA hyperalgesia. Sensory neuron-specific deletion of TrkA was achieved by tamoxifen injection in 4-week-old TrkAfl/fl;NaV1.8CreERT2 (Ntrk1 fl/fl;Scn10aCreERT2) mice. OA was induced by partial medial meniscectomy (PMM) in 12-week-old mice, and OA-pain-related behavior was analyzed for 12 weeks followed by comprehensive histopathological examinations. OA-associated joint pain was markedly improved without cartilage protection in sensory-neuron-specific conditional TrkA knock-out (cKO) mice. Alleviated hyperalgesia was associated with suppression of the NGF/TrkA pathway and reduced angiogenesis in fibroblast-like synovial cells. Elevated pain transmitters in the DRG of OA-induced mice were significantly diminished in sensory-neuron-specific TrkA cKO and global TrkA cKO mice. Spinal glial activity and brain-derived neurotropic factor (BDNF) were significantly increased in OA-induced mice but were substantially eliminated by sensory-neuron-specific deletion. Our results suggest that augmentation of NGF/TrkA signaling in the joint synovium and the peripheral sensory neurons facilitate pro-nociception and centralized pain sensitization.


Subject(s)
Nerve Growth Factor , Osteoarthritis , Mice , Animals , Nerve Growth Factor/genetics , Nerve Growth Factor/metabolism , Receptor, trkA/genetics , Receptor, trkA/metabolism , Tropomyosin/metabolism , Hyperalgesia/metabolism , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Sensory Receptor Cells/metabolism , Pain/metabolism , Ganglia, Spinal/metabolism , Osteoarthritis/metabolism , Tamoxifen/metabolism
8.
Biomedicines ; 10(6)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35740320

ABSTRACT

To test probiotic therapy for osteoarthritis (OA), we administered Lactobacillus acidophilus (LA) by oral gavage (2×/week) after induction of OA by partial medial meniscectomy (PMM). Pain was assessed by von Frey filament and hot plate testing. Joint pathology and pain markers were comprehensively analyzed in knee joints, spinal cords, dorsal root ganglia and distal colon by Safranin O/fast green staining, immunofluorescence microscopy and RT-qPCR. LA acutely reduced inflammatory knee joint pain and prevented further OA progression. The therapeutic efficacy of LA was supported by a significant reduction of cartilage-degrading enzymes, pain markers and inflammatory factors in the tissues we examined. This finding suggests a likely clinical effect of LA on OA. The effect of LA treatment on the fecal microbiome was assessed by 16S rRNA gene amplicon sequencing analysis. LA significantly altered the fecal microbiota compared to vehicle-treated mice (PERMANOVA p < 0.009). Our pre-clinical OA animal model revealed significant OA disease modifying effects of LA as reflected by rapid joint pain reduction, cartilage protection, and reversal of dysbiosis. Our findings suggest that LA treatment has beneficial systemic effects that can potentially be developed as a safe OA disease-modifying drug (OADMD).

9.
J Clin Invest ; 132(7)2022 04 01.
Article in English | MEDLINE | ID: mdl-35104242

ABSTRACT

Multiple beneficial cardiovascular effects of HDL depend on sphingosine-1-phosphate (S1P). S1P associates with HDL by binding to apolipoprotein M (ApoM). Insulin resistance is a major driver of dyslipidemia and cardiovascular risk. However, the mechanisms linking alterations in insulin signaling with plasma lipoprotein metabolism are incompletely understood. The insulin-repressible FoxO transcription factors mediate key effects of hepatic insulin action on glucose and lipoprotein metabolism. This work tested whether hepatic insulin signaling regulates HDL-S1P and aimed to identify the underlying molecular mechanisms. We report that insulin-resistant, nondiabetic individuals had decreased HDL-S1P levels, but no change in total plasma S1P. This also occurred in insulin-resistant db/db mice, which had low ApoM and a specific reduction of S1P in the HDL fraction, with no change in total plasma S1P levels. Using mice lacking hepatic FoxOs (L-FoxO1,3,4), we found that hepatic FoxOs were required for ApoM expression. Total plasma S1P levels were similar to those in controls, but S1P was nearly absent from HDL and was instead increased in the lipoprotein-depleted plasma fraction. This phenotype was restored to normal by rescuing ApoM in L-FoxO1,3,4 mice. Our findings show that insulin resistance in humans and mice is associated with decreased HDL-associated S1P. Our study shows that hepatic FoxO transcription factors are regulators of the ApoM/S1P pathway.


Subject(s)
Apolipoproteins M , Forkhead Transcription Factors , Insulin , Liver/metabolism , Lysophospholipids , Sphingosine , Animals , Apolipoproteins M/genetics , Apolipoproteins M/metabolism , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Insulin/metabolism , Lipoproteins, HDL/metabolism , Lysophospholipids/metabolism , Mice , Sphingosine/analogs & derivatives , Sphingosine/metabolism
10.
iScience ; 24(3): 102218, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33748706

ABSTRACT

TxNIP (Thioredoxin-interacting protein) is considered as a potential drug target for type 2 diabetes. Although TxNIP expression is correlated with hyperglycemia and glucotoxicity in pancreatic ß cells, its regulation in liver cells has been less investigated. In the current study, we aim at providing a better understanding of Txnip regulation in hepatocytes in response to physiological stimuli and in the context of hyperglycemia in db/db mice. We focused on regulatory pathways governed by ChREBP (Carbohydrate Responsive Element Binding Protein) and FoxO1 (Forkhead box protein O1), transcription factors that play central roles in mediating the effects of glucose and fasting on gene expression, respectively. Studies using genetically modified mice reveal that hepatic TxNIP is up-regulated by both ChREBP and FoxO1 in liver cells and that its expression strongly correlates with fasting, suggesting a major role for this protein in the physiological adaptation to nutrient restriction.

11.
Gene ; 785: 145619, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33781857

ABSTRACT

Osteoarthritis (OA) is one of the most common medical conditions affecting > 300 million people globally which represents the formidable public health challenge. Despite its clinical and financial ramifications, there are currently no approved disease modifying OA drugs available and symptom palliation is the only alternative. Currently, the amount of data on the human intestinal microbiome is growing at a high rate, both in health and in various pathological conditions. With an increase in the amount of the accumulated data, there is an expanded understanding that the microbiome provides compelling evidence of a link between thegut microbiomeand development ofOA. The microbiota management tools of probiotics and/or prebiotics or symbiotic have been developed and indeed, commercialized over the past few decades with the expressed purpose of altering the microbiota within the gastrointestinal tract which could be a potentially novel intervention to tackle or prevent OA. However, the mechanisms how intestinal microbiota affects the OA pathogenesis are still not clear and further research targeting specific gut microbiota or its metabolites is still needed to advance OA treatment strategies from symptomatic management to individualized interventions of OA pathogenesis. This article provides an overview of the various preclinical and clinical studies using probiotics and prebiotics as plausible therapeutic options that can restore the gastrointestinal microbiota and its impact on the OA pathogenesis. May be in the near future the targeted alterations of gut microbiota may pave the way for developing new interventions to prevent and treat OA.


Subject(s)
Gastrointestinal Microbiome , Osteoarthritis/diet therapy , Osteoarthritis/microbiology , Prebiotics , Probiotics/therapeutic use , Animals , Gout/microbiology , Humans , Obesity/complications , Osteoarthritis/complications , Signal Transduction
12.
J Cell Physiol ; 235(6): 5305-5317, 2020 06.
Article in English | MEDLINE | ID: mdl-31875985

ABSTRACT

Although degenerative disc disease (DDD) and related low back pain (LBP) are growing public health problems, the underlying disease mechanisms remain unclear. An increase in the vascular endothelial growth factor (VEGF) levels in DDD has been reported. This study aimed to examine the role of VEGF receptors (VEGFRs) in DDD, using a mouse model of DDD. Progressive DDD was induced by anterior stabbing of lumbar intervertebral discs in wild type (WT) and VEGFR-1 tyrosine-kinase deficient mice (vegfr-1TK-/- ). Pain assessments were performed weekly for 12 weeks. Histological and immunohistochemical assessments were made for discs, dorsal root ganglions, and spinal cord. Both vegfr-1TK-/- and WT mice presented with similar pathological changes in discs with an increased expression of inflammatory cytokines and matrix-degrading enzymes. Despite the similar pathological patterns, vegfr-1TK-/- mice showed insensitivity to pain compared with WT mice. This insensitivity to discogenic pain was related to lower levels of pain factors in the discs and peripheral sensory neurons and lower spinal glial activation in the vegfr-1TK- /- mice than in the WT mice. Exogenous stimulation of bovine disc cells with VEGF increased inflammatory and cartilage degrading enzyme. Silencing vegfr-1 by small-interfering-RNA decreased VEGF-induced expression of pain markers, while silencing vegfr-2 decreased VEGF-induced expression of inflammatory and metabolic markers without changing pain markers. This suggests the involvement of VEGFR-1 signaling specifically in pain transmission. Collectively, our results indicate that the VEGF signaling is involved in DDD. Particularly, VEGFR-1 is critical for discogenic LBP transmission independent of the degree of disc pathology.


Subject(s)
Intervertebral Disc/metabolism , Low Back Pain/genetics , Lumbar Vertebrae/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor Receptor-1/genetics , Animals , Disease Models, Animal , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Gene Expression Regulation/genetics , Humans , Intervertebral Disc/injuries , Intervertebral Disc/pathology , Low Back Pain/pathology , Lumbar Vertebrae/injuries , Lumbar Vertebrae/pathology , Mice , Pain Measurement , Signal Transduction/genetics
14.
J Biol Chem ; 294(3): 1059-1069, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30459233

ABSTRACT

FoxO proteins are major targets of insulin action, and FoxO1 mediates the effects of insulin on hepatic glucose metabolism. We reported previously that serpinB1 is a liver-secreted factor (hepatokine) that promotes adaptive ß-cell proliferation in response to insulin resistance in the liver-specific insulin receptor knockout (LIRKO) mouse. Here we report that FoxO1 plays a critical role in promoting serpinB1 expression in hepatic insulin resistance in a non-cell-autonomous manner. Mice lacking both the insulin receptor and FoxO1 (LIRFKO) exhibit reduced ß-cell mass compared with LIRKO mice because of attenuation of ß-cell proliferation. Although hepatic expression of serpinB1 mRNA and protein levels was increased in LIRKO mice, both the mRNA and protein levels returned to control levels in LIRFKO mice. Furthermore, liver-specific expression of constitutively active FoxO1 in transgenic mice induced an increase in hepatic serpinB1 mRNA and protein levels in refed mice. Conversely, serpinB1 mRNA and protein levels were reduced in mice lacking FoxO proteins in the liver. ChIP studies demonstrated that FoxO1 binds to three distinct sites located ∼9 kb upstream of the serpinb1 gene in primary mouse hepatocytes and that this binding is enhanced in hepatocytes from LIRKO mice. However, adenoviral expression of WT or constitutively active FoxO1 and insulin treatment are sufficient to regulate other FoxO1 target genes (IGFBP-1 and PEPCK) but not serpinB1 expression in mouse primary hepatocytes. These results indicate that liver FoxO1 promotes serpinB1 expression in hepatic insulin resistance and that non-cell-autonomous factors contribute to FoxO1-dependent effects on serpinB1 expression in the liver.


Subject(s)
Forkhead Box Protein O1/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Liver/metabolism , Serpins/biosynthesis , Animals , Forkhead Box Protein O1/genetics , Hepatocytes/cytology , Insulin-Like Growth Factor Binding Protein 1/genetics , Insulin-Like Growth Factor Binding Protein 1/metabolism , Liver/cytology , Male , Mice , Mice, Transgenic , Phosphoenolpyruvate Carboxykinase (ATP)/genetics , Phosphoenolpyruvate Carboxykinase (ATP)/metabolism , Serpins/genetics
15.
Gene ; 655: 1-12, 2018 May 20.
Article in English | MEDLINE | ID: mdl-29474860

ABSTRACT

Environmental disruption of the circadian rhythm is linked with increased pain due to osteoarthritis (OA). We aimed to characterize the role of the clock gene in OA-induced pain more systemically using both genetic and pharmacological approaches. Genetically modified mice, (bmal1f/fNav1.8CreERT mice), generated by deleting the critical clock gene, bmal1, from Nav1.8 sensory neurons, were resistant to the development of mechanical hyperalgesia associated with OA induced by partial medial meniscectomy (PMM) of the knee. In wild-type mice, induction of OA by PMM surgery led to a substantial increase in BMAL1 expression in DRG neurons. Interestingly, pharmacological activation of the REV-ERB (a negative regulator of bmal1 transcription) with SR9009 resulted in reduction of BMAL1 expression, and a significant decrease in mechanical hyperalgesia associated with OA. Cartilage degeneration was also significantly reduced in mice treated with the REV-ERB agonist SR9009. Based on these data, we also assessed the effect of pharmacological activation of REV-ERB using a model of environmental circadian disruption with its associated mechanical hyperalgesia, and noted that SR9009 was an effective analgesic in this model as well. Our data clearly demonstrate that genetic disruption of the molecular clock, via deletion of bmal1 in the sensory neurons of the DRG, decreases pain in a model of OA. Furthermore, pharmacological activation of REV-ERB leading to suppression of BMAL1 expression may be an effective method for treating OA-related pain, as well as to reduce joint damage associated with this disease.


Subject(s)
Analgesics/therapeutic use , Arthralgia/drug therapy , Circadian Rhythm/drug effects , Circadian Rhythm/genetics , Molecular Targeted Therapy/methods , Osteoarthritis/drug therapy , Animals , Arthralgia/genetics , CLOCK Proteins/genetics , Female , Hyperalgesia/drug therapy , Hyperalgesia/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutagenesis/physiology , NAV1.8 Voltage-Gated Sodium Channel/genetics , Osteoarthritis/genetics
16.
Cell Rep ; 22(2): 523-534, 2018 01 09.
Article in English | MEDLINE | ID: mdl-29320745

ABSTRACT

Liver-specific disruption of the type 2 deiodinase gene (Alb-D2KO) results in resistance to both diet-induced obesity and liver steatosis in mice. Here, we report that this is explained by an ∼60% reduction in liver zinc-finger protein-125 (Zfp125) expression. Zfp125 is a Foxo1-inducible transcriptional repressor that causes lipid accumulation in the AML12 mouse hepatic cell line and liver steatosis in mice by reducing liver secretion of triglycerides and hepatocyte efflux of cholesterol. Zfp125 acts by repressing 18 genes involved in lipoprotein structure, lipid binding, and transport. The ApoE promoter contains a functional Zfp125-binding element that is also present in 17 other lipid-related genes repressed by Zfp125. While liver-specific knockdown of Zfp125 causes an "Alb-D2KO-like" metabolic phenotype, liver-specific normalization of Zfp125 expression in Alb-D2KO mice rescues the phenotype, restoring normal susceptibility to diet-induced obesity, liver steatosis, and hypercholesterolemia.


Subject(s)
DNA-Binding Proteins/genetics , Fatty Liver/genetics , Forkhead Box Protein O1/genetics , Hypercholesterolemia/genetics , Animals , DNA-Binding Proteins/metabolism , Fatty Liver/pathology , Forkhead Box Protein O1/metabolism , Mice
17.
Gene Rep ; 11: 94-100, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30873504

ABSTRACT

Osteoarthritis (OA) is a painful and debilitating disease. A striking feature of OA is the dramatic increase in vascular endothelial growth factor (VEGF) levels and in new blood vessel formation in the joints, both of which correlate with the severity of OA pain. Our aim was to determine whether anti-VEGF monoclonal antibodies (mAbs) - MF-1 (mAb to VEGFR1) and DC101 (mAb to VEGFR2) - can reduce OA pain and can do so by targeting VEGF signaling pathways such as Flt-1 (VEGFR1) and Flk-1 (VEGFR2). After IACUC approval, OA was induced by partial medial meniscectomy (PMM) in C57/BL6 mice (20 g). ln the first experiment, for validation of VEGFR1 in DRG, the mouse dorsal root ganglion (DRG) was stimulated with NGF for 48 hours to find the relative gene induction for VEGFR1 vs. 18S by RT-PCR. In the second experiment, Biotin-conjugated VEGFA (1 µg/knee joint) was administered in the left knee joint of mice with advanced OA in order to characterization of VEGFR1 and VEGFR2. pVEGFR1/VEGFR2 was detected by immunostaining in DRGs. Finally, MF-1 and DC101 were administered in OA mice by both intrathecal (IT) and intraarticular (IA) injections, and the change in paw withdrawal threshold (PWT) was measured. Retrograde transport of VEGF was confirmed for detection of pVEGFR1/VEGFR2 in the DRG. PMM surgery led to development of OA and mechanical allodynia, with reduced paw withdrawal thresholds (PWT) (P<0.0001). IT injection of MF-1 led to a reduction of allodynia in advanced OA, but injection of DC101 did not. IA injection of MF-1 or DC101 at one week after PMM injury did not reduce allodynia, but when injected in advanced OA mice joints at 12 weeks, both Mabs increased PWT an indicator of analgesia. Our data show that MF-1 (VEGR1 inhibition) decreases pain in advanced OA after IT or IA injection. Activation of MF-1 or DC101 may ameliorate OA-related joint pain.

18.
J Cell Physiol ; 233(10): 6589-6602, 2018 10.
Article in English | MEDLINE | ID: mdl-29150945

ABSTRACT

Discogenic low back pain (DLBP) is extremely common and costly. Effective treatments are lacking due to DLBP's unknown pathogenesis. Currently, there are no in vivo mouse models of DLBP, which restricts research in this field. The aim of this study was to establish a reliable DLBP model in mouse that captures the pathological changes in the disc and allows longitudinal pain testing. The model was generated by puncturing the mouse lumbar discs (L4/5, L5/6, and L6/S1) and removing the nucleus pulposus using a microscalpel under the microscope. Histology, molecular pathways, and pain-related behaviors were examined. Over 12 weeks post-surgery, animals displayed the mechanical, heat, and cold hyperalgesia along with decreased burrowing and rearing. Histology showed progressive disc degeneration with loss of disc height, nucleus pulposus reduction, proteoglycan depletion, and annular fibrotic disorganization. Immunohistochemistry revealed a substantial increase in inflammatory mediators at 2 and 4 weeks. Nerve growth factor was upregulated from 2 weeks to the end of the experiment. Nerve fiber ingrowth was induced in the injured discs after 4 weeks. Disc-puncture also produced an upregulation of neuropeptides in dorsal root ganglia neurons and an activation of glial cells in the spinal cord dorsal horn. These findings indicate that the cellular and structural changes in discs, as well as peripheral and central nervous system plasticity, paralleled persistent, and robust behavioral pain responses. Therefore, this mouse DLBP model could be used to investigate mechanisms underlying discogenic pain, thereby facilitating effective drug screening and development of treatments for DLBP.


Subject(s)
Intervertebral Disc Degeneration/physiopathology , Low Back Pain/physiopathology , Spinal Cord Dorsal Horn/physiopathology , Spinal Puncture , Animals , Central Nervous System/physiopathology , Disease Models, Animal , Ganglia, Spinal/physiopathology , Humans , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/surgery , Low Back Pain/genetics , Low Back Pain/surgery , Mice , Neuroglia/pathology , Neuropeptides/genetics , Nucleus Pulposus/physiopathology , Spinal Cord Dorsal Horn/surgery
19.
Cell Rep ; 15(2): 349-59, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27050511

ABSTRACT

Metabolism is a highly integrated process that is coordinately regulated between tissues and within individual cells. FoxO proteins are major targets of insulin action and contribute to the regulation of gluconeogenesis, glycolysis, and lipogenesis in the liver. However, the mechanisms by which FoxO proteins exert these diverse effects in an integrated fashion remain poorly understood. We report that FoxO proteins also exert important effects on intrahepatic lipolysis and fatty acid oxidation via the regulation of adipose triacylglycerol lipase (ATGL), which mediates the first step in lipolysis, and its inhibitor, the G0/S1 switch 2 gene (G0S2). We also find that ATGL-dependent lipolysis plays a critical role in mediating diverse effects of FoxO proteins in the liver, including effects on gluconeogenic, glycolytic, and lipogenic gene expression and metabolism. These results indicate that intrahepatic lipolysis plays a critical role in mediating and integrating the regulation of glucose and lipid metabolism downstream of FoxO proteins.


Subject(s)
Adipose Tissue/metabolism , Forkhead Box Protein O1/metabolism , Glucose/metabolism , Lipase/metabolism , Lipid Metabolism , Liver/metabolism , Animals , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Fatty Acids/metabolism , Gene Expression Regulation , Hepatocytes/metabolism , Homeostasis , Humans , Lipase/genetics , Lipid Metabolism/genetics , Lipogenesis , Male , Mice, Transgenic , Models, Biological , Oxidation-Reduction
20.
J Biol Chem ; 290(51): 30551-61, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26499800

ABSTRACT

The activity of the thyroid gland is stimulated by food availability via leptin-induced thyrotropin-releasing hormone/thyroid-stimulating hormone expression. Here we show that food availability also stimulates thyroid hormone activation by accelerating the conversion of thyroxine to triiodothyronine via type 2 deiodinase in mouse skeletal muscle and in a cell model transitioning from 0.1 to 10% FBS. The underlying mechanism is transcriptional derepression of DIO2 through the mTORC2 pathway as defined in rictor knockdown cells. In cells kept in 0.1% FBS, there is DIO2 inhibition via FOXO1 binding to the DIO2 promoter. Repression of DIO2 by FOXO1 was confirmed using its specific inhibitor AS1842856 or adenoviral infection of constitutively active FOXO1. ChIP studies indicate that 4 h after 10% FBS-containing medium, FOXO1 binding markedly decreases, and the DIO2 promoter is activated. Studies in the insulin receptor FOXO1 KO mouse indicate that insulin is a key signaling molecule in this process. We conclude that FOXO1 represses DIO2 during fasting and that derepression occurs via nutritional activation of the PI3K-mTORC2-Akt pathway.


Subject(s)
Fasting/metabolism , Iodide Peroxidase/biosynthesis , Muscle, Skeletal/metabolism , Thyroxine/metabolism , Triiodothyronine/metabolism , Animals , Forkhead Box Protein O1 , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Iodide Peroxidase/genetics , Male , Mechanistic Target of Rapamycin Complex 2 , Mice , Mice, Knockout , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Thyroxine/genetics , Triiodothyronine/genetics , Iodothyronine Deiodinase Type II
SELECTION OF CITATIONS
SEARCH DETAIL
...