Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37508443

ABSTRACT

The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored. We therefore characterised the suite of BVOCs that comprise the volatilome of the sea anemone Exaiptasia diaphana ('Aiptasia') when aposymbiotic and in symbiosis with either its native dinoflagellate symbiont Breviolum minutum or the non-native symbiont Durusdinium trenchii. In parallel, the bacterial community structure in these different symbiotic states was fully characterised to resolve the holobiont microbiome. Based on rRNA analyses, 147 unique amplicon sequence variants (ASVs) were observed across symbiotic states. Furthermore, the microbiomes were distinct across the different symbiotic states: bacteria in the family Vibrionaceae were the most abundant in aposymbiotic anemones; those in the family Crocinitomicaceae were the most abundant in anemones symbiotic with D. trenchii; and anemones symbiotic with B. minutum had the highest proportion of low-abundance ASVs. Across these different holobionts, 142 BVOCs were detected and classified into 17 groups based on their chemical structure, with BVOCs containing multiple functional groups being the most abundant. Isoprene was detected in higher abundance when anemones hosted their native symbiont, and dimethyl sulphide was detected in higher abundance in the volatilome of both Aiptasia-Symbiodiniaceae combinations relative to aposymbiotic anemones. The volatilomes of aposymbiotic anemones and anemones symbiotic with B. minutum were distinct, while the volatilome of anemones symbiotic with D. trenchii overlapped both of the others. Collectively, our results are consistent with previous reports that D. trenchii produces a metabolically sub-optimal symbiosis with Aiptasia, and add to our understanding of how symbiotic cnidarians, including corals, may respond to climate change should they acquire novel dinoflagellate partners.

2.
PeerJ ; 11: e15023, 2023.
Article in English | MEDLINE | ID: mdl-37151292

ABSTRACT

Within microeukaryotes, genetic variation and functional variation sometimes accumulate more quickly than morphological differences. To understand the evolutionary history and ecology of such lineages, it is key to examine diversity at multiple levels of organization. In the dinoflagellate family Symbiodiniaceae, which can form endosymbioses with cnidarians (e.g., corals, octocorals, sea anemones, jellyfish), other marine invertebrates (e.g., sponges, molluscs, flatworms), and protists (e.g., foraminifera), molecular data have been used extensively over the past three decades to describe phenotypes and to make evolutionary and ecological inferences. Despite advances in Symbiodiniaceae genomics, a lack of consensus among researchers with respect to interpreting genetic data has slowed progress in the field and acted as a barrier to reconciling observations. Here, we identify key challenges regarding the assessment and interpretation of Symbiodiniaceae genetic diversity across three levels: species, populations, and communities. We summarize areas of agreement and highlight techniques and approaches that are broadly accepted. In areas where debate remains, we identify unresolved issues and discuss technologies and approaches that can help to fill knowledge gaps related to genetic and phenotypic diversity. We also discuss ways to stimulate progress, in particular by fostering a more inclusive and collaborative research community. We hope that this perspective will inspire and accelerate coral reef science by serving as a resource to those designing experiments, publishing research, and applying for funding related to Symbiodiniaceae and their symbiotic partnerships.


Subject(s)
Coral Reefs , Dinoflagellida , Genetic Variation , Dinoflagellida/classification , Dinoflagellida/genetics , Phylogeny , Consensus , Anthozoa , Symbiosis
3.
Microorganisms ; 11(2)2023 Jan 22.
Article in English | MEDLINE | ID: mdl-36838257

ABSTRACT

The cellular mechanisms responsible for the regulation of nutrient exchange, immune response, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved. Here, we employed liquid chromatography-mass spectrometry to elucidate proteomic changes associated with symbiosis in Breviolum minutum, a native symbiont of the sea anemone Exaiptasia diaphana ('Aiptasia'). We manipulated nutrients available to the algae in culture and to the holobiont in hospite (i.e., in symbiosis) and then monitored the impacts of our treatments on host-endosymbiont interactions. Both the symbiotic and nutritional states had significant impacts on the B. minutum proteome. B. minutum in hospite showed an increased abundance of proteins involved in phosphoinositol metabolism (e.g., glycerophosphoinositol permease 1 and phosphatidylinositol phosphatase) relative to the free-living alga, potentially reflecting inter-partner signalling that promotes the stability of the symbiosis. Proteins potentially involved in concentrating and fixing inorganic carbon (e.g., carbonic anhydrase, V-type ATPase) and in the assimilation of nitrogen (e.g., glutamine synthase) were more abundant in free-living B. minutum than in hospite, possibly due to host-facilitated access to inorganic carbon and nitrogen limitation by the host when in hospite. Photosystem proteins increased in abundance at high nutrient levels irrespective of the symbiotic state, as did proteins involved in antioxidant defences (e.g., superoxide dismutase, glutathione s-transferase). Proteins involved in iron metabolism were also affected by the nutritional state, with an increased iron demand and uptake under low nutrient treatments. These results detail the changes in symbiont physiology in response to the host microenvironment and nutrient availability and indicate potential symbiont-driven mechanisms that regulate the cnidarian-dinoflagellate symbiosis.

4.
Plant Cell Physiol ; 64(4): 433-447, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-36565060

ABSTRACT

Coral bleaching is primarily caused by high sea surface temperatures, and nutrient enrichment of reefs is associated with lower resilience to thermal stress and ecological degradation. Excess inorganic nitrogen relative to phosphate has been proposed to sensitize corals to thermal bleaching. We assessed the physiological and proteomic responses of cultures of the dinoflagellate coral symbiont Symbiodinium microadriaticum to elevated temperature under low-nutrient, high-nutrient and phosphate-limited conditions. Elevated temperature induced reductions of many chloroplast proteins, particularly the light-harvesting complexes, and simultaneously increased the abundance of many chaperone proteins. Proteomes were similar when the N:P ratio was near the Redfield ratio, regardless of absolute N and P concentrations, but were strongly affected by phosphate limitation. Very high N:P inhibited Symbiodinium cell division while increasing the abundance of chloroplast proteins. The proteome response to phosphate limitation was greater than that to elevated temperature, as measured by the number of differentially abundant proteins. Increased physiological sensitivity to high temperatures under high nutrients or imbalanced N:P ratios was not apparent; however, oxidative stress response proteins were enriched among proteins responding to thermal stress under imbalanced N:P ratios. These data provide a detailed catalog of the effects of high temperatures and nutrients on a coral symbiont proteome.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Proteome/metabolism , Proteomics , Anthozoa/metabolism , Phosphates/metabolism , Dinoflagellida/metabolism , Nutrients , Symbiosis
5.
Adv Mar Biol ; 92: 55-127, 2022.
Article in English | MEDLINE | ID: mdl-36208879

ABSTRACT

Among the most successful microeukaryotes to form mutualisms with animals are dinoflagellates in the family Symbiodiniaceae. These photosynthetic symbioses drive significant primary production and are responsible for the formation of coral reef ecosystems but are particularly sensitive when environmental conditions become extreme. Annual episodes of widespread coral bleaching (disassociation of the mutualistic partnership) and mortality are forecasted from the year 2060 under current trends of ocean warming. However, host cnidarians and dinoflagellate symbionts display exceptional genetic and functional diversity, and meaningful predictions of the future that embrace this biological complexity are difficult to make. A recent move to trait-based biology (and an understanding of how traits are shaped by the environment) has been adopted to move past this problem. The aim of this review is to: (1) provide an overview of the major cnidarian lineages that are symbiotic with Symbiodiniaceae; (2) summarise the symbiodiniacean genera associated with cnidarians with reference to recent changes in taxonomy and systematics; (3) examine the knowledge gaps in Symbiodiniaceae life history from a trait-based perspective; (4) review Symbiodiniaceae trait variation along three abiotic gradients (light, nutrients, and temperature); and (5) provide recommendations for future research of Symbiodiniaceae traits. We anticipate that a detailed understanding of traits will further reveal basic knowledge of the evolution and functional diversity of these mutualisms, as well as enhance future efforts to model stability and change in ecosystems dependent on cnidarian-dinoflagellate organisms.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Dinoflagellida/genetics , Ecosystem , Symbiosis
6.
J Exp Biol ; 225(19)2022 10 01.
Article in English | MEDLINE | ID: mdl-36156083

ABSTRACT

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.e. 'volatilomics'). We characterised volatile profiles of the sea anemone Aiptasia (Exaiptasia diaphana), a model system for cnidarian-dinoflagellate symbiosis, using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. We compared volatile profiles between: (1) symbiotic anemones containing their native symbiont, Breviolum minutum; (2) aposymbiotic anemones; and (3) cultured isolates of B. minutum. Overall, 152 BVOCs were detected, and classified into 14 groups based on their chemical structure, the most numerous groups being alkanes and aromatic compounds. A total of 53 BVOCs were differentially abundant between aposymbiotic anemones and B. minutum cultures; 13 between aposymbiotic and symbiotic anemones; and 60 between symbiotic anemones and cultures of B. minutum. More BVOCs were differentially abundant between cultured and symbiotic dinoflagellates than between aposymbiotic and symbiotic anemones, suggesting that symbiosis may modify symbiont physiology more than host physiology. This is the first volatilome analysis of the Aiptasia model system and provides a foundation from which to explore how BVOC production is perturbed under environmental stress, and ultimately the role they play in this important symbiosis.


Subject(s)
Dinoflagellida , Sea Anemones , Volatile Organic Compounds , Alkanes , Animals , Dinoflagellida/physiology , Sea Anemones/physiology , Symbiosis
7.
Appl Environ Microbiol ; 88(12): e0041222, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35678605

ABSTRACT

Bidirectional nutrient flow between partners is integral to the cnidarian-dinoflagellate endosymbiosis. However, our current knowledge of the transporter proteins that regulate nutrient and metabolite trafficking is nascent. Four transmembrane transporters that likely play an important role in interpartner nitrogen and carbon exchange were investigated with immunocytochemistry in the model sea anemone Exaiptasia diaphana ("Aiptasia"; strain NZ1): ammonium transporter 1 (AMT1), V-type proton ATPase (VHA), facilitated glucose transporter member 8 (GLUT8), and aquaporin-3 (AQP3). Anemones lacking symbionts were compared with those in symbiosis with either their typical, homologous dinoflagellate symbiont, Breviolum minutum, or the heterologous species, Durusdinium trenchii and Symbiodinium microadriaticum. AMT1 and VHA were only detected in symbiotic Aiptasia, irrespective of symbiont type. However, GLUT8 and AQP3 were detected in both symbiotic and aposymbiotic states. All transporters were localized to both the epidermis and gastrodermis, though localization patterns in host tissues were heavily influenced by symbiont identity, with S. microadriaticum-colonized anemones showing the most distinct patterns. These patterns suggested disruption of fixed carbon and inorganic nitrogen fluxes when in symbiosis with heterologous versus homologous symbionts. This study enhances our understanding of nutrient transport and host-symbiont integration, while providing a platform for further investigation of nutrient transporters and the host-symbiont interface in the cnidarian-dinoflagellate symbiosis. IMPORTANCE Coral reefs are in serious decline, in particular due to the thermally induced dysfunction of the cnidarian-dinoflagellate symbiosis that underlies their success. Yet our ability to react to this crisis is hindered by limited knowledge of how this symbiosis functions. Indeed, we still have much to learn about the cellular integration that determines whether a particular host-symbiont combination can persist, and hence whether corals might be able to adapt by acquiring new, more thermally resistant symbionts. Here, we employed immunocytochemistry to localize and quantify key nutrient transporters in tissues of the sea anemone Aiptasia, a globally adopted model system for this symbiosis, and compared the expression of these transporters when the host is colonized by native versus nonnative symbionts. We showed a clear link between transporter expression and symbiont identity, elucidating the cellular events that dictate symbiosis success, and we provide a methodological platform for further examination of cellular integration in this ecologically important symbiosis.


Subject(s)
Dinoflagellida , Sea Anemones , Animals , Carbon , Nitrogen , Sea Anemones/physiology , Symbiosis
8.
Sci Data ; 9(1): 153, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383179

ABSTRACT

The Symbiodiniaceae are a taxonomically and functionally diverse family of marine dinoflagellates. Their symbiotic relationship with invertebrates such as scleractinian corals has made them the focus of decades of research to resolve the underlying biology regulating their sensitivity to stressors, particularly thermal stress. Research to-date suggests that Symbiodiniaceae stress sensitivity is governed by a complex interplay between phylogenetic dependent and independent traits (diversity of characteristics of a species). Consequently, there is a need for datasets that simultaneously broadly resolve molecular and physiological processes under stressed and non-stressed conditions. Therefore, we provide a dataset simultaneously generating transcriptome, metabolome, and proteome data for three ecologically important Symbiodiniaceae isolates under nutrient replete growth conditions and two temperature treatments (ca. 26 °C and 32 °C). Elevated sea surface temperature is primarily responsible for coral bleaching events that occur when the coral-Symbiodiniaceae relationship has been disrupted. Symbiodiniaceae can strongly influence their host's response to thermal stress and consequently it is necessary to resolve drivers of Symbiodiniaceae heat stress tolerance. We anticipate these datasets to expand our understanding on the key genotypic and functional properties that influence the sensitivities of Symbiodiniaceae to thermal stress.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Anthozoa/genetics , Anthozoa/metabolism , Dinoflagellida/genetics , Dinoflagellida/metabolism , Heat-Shock Response , Metabolome , Phylogeny , Proteome , Symbiosis , Transcriptome
9.
ISME J ; 16(8): 1883-1895, 2022 08.
Article in English | MEDLINE | ID: mdl-35444262

ABSTRACT

Endozoicomonas are prevalent, abundant bacterial associates of marine animals, including corals. Their role in holobiont health and functioning, however, remains poorly understood. To identify potential interactions within the coral holobiont, we characterized the novel isolate Endozoicomonas marisrubri sp. nov. 6c and assessed its transcriptomic and proteomic response to tissue extracts of its native host, the Red Sea coral Acropora humilis. We show that coral tissue extracts stimulated differential expression of genes putatively involved in symbiosis establishment via the modulation of the host immune response by E. marisrubri 6c, such as genes for flagellar assembly, ankyrins, ephrins, and serpins. Proteome analyses revealed that E. marisrubri 6c upregulated vitamin B1 and B6 biosynthesis and glycolytic processes in response to holobiont cues. Our results suggest that the priming of Endozoicomonas for a symbiotic lifestyle involves the modulation of host immunity and the exchange of essential metabolites with other holobiont members. Consequently, Endozoicomonas may play an important role in holobiont nutrient cycling and may therefore contribute to coral health, acclimatization, and adaptation.


Subject(s)
Anthozoa , Gammaproteobacteria , Animals , Anthozoa/microbiology , Coral Reefs , Cues , Gammaproteobacteria/genetics , Proteomics , Symbiosis , Tissue Extracts
10.
J Eukaryot Microbiol ; 69(1): e12870, 2022 01.
Article in English | MEDLINE | ID: mdl-34448326

ABSTRACT

The algal cell wall is an important cellular component that functions in defense, nutrient utilization, signaling, adhesion, and cell-cell recognition-processes important in the cnidarian-dinoflagellate symbiosis. The cell wall of symbiodiniacean dinoflagellates is not well characterized. Here, we present a method to isolate cell walls of Symbiodiniaceae and prepare cell-wall-enriched samples for proteomic analysis. Label-free liquid chromatography-electrospray ionization tandem mass spectrometry was used to explore the surface proteome of two Symbiodiniaceae species from the Great Barrier Reef: Breviolum minutum and Cladocopium goreaui. Transporters, hydrolases, translocases, and proteins involved in cell-adhesion and protein-protein interactions were identified, but the majority of cell wall proteins had no homologues in public databases. We propose roles for some of these proteins in the cnidarian-dinoflagellate symbiosis. This work provides the first proteomics investigation of cell wall proteins in the Symbiodiniaceae and represents a basis for future explorations of the roles of cell wall proteins in Symbiodiniaceae and other dinoflagellates.


Subject(s)
Cnidaria , Dinoflagellida , Animals , Cell Wall , Proteome , Proteomics , Symbiosis
11.
Front Microbiol ; 13: 1094255, 2022.
Article in English | MEDLINE | ID: mdl-36777026

ABSTRACT

The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored. Here, we aimed to confirm the presence and assess the specific enzymatic composition of the PI signalling pathway across cnidaria and dinoflagellates by compiling 21 symbiotic anthozoan (corals and sea anemones) and 28 symbiotic dinoflagellate (Symbiodiniaceae) transcriptomic and genomic datasets and querying genes related to this pathway. Presence or absence of PI-kinase and PI-phosphatase orthologs were also compared between a broad sampling of taxonomically related symbiotic and non-symbiotic species. Across the symbiotic anthozoans analysed, there was a complete and highly conserved PI pathway, analogous to the pathway found in model eukaryotes. The Symbiodiniaceae pathway showed similarities to its sister taxon, the Apicomplexa, with the absence of PI 4-phosphatases. However, conversely to Apicomplexa, there was also an expansion of homologs present in the PI5-phosphatase and PI5-kinase groups, with unique Symbiodiniaceae proteins identified that are unknown from non-symbiotic unicellular organisms. Additionally, we aimed to unravel the putative functionalities of the PI signalling pathway in this symbiosis by analysing phosphoinositide (PIP)-binding proteins. Analysis of phosphoinositide (PIP)-binding proteins showed that, on average, 2.23 and 1.29% of the total assemblies of anthozoan and Symbiodiniaceae, respectively, have the potential to bind to PIPs. Enrichment of Gene Ontology (GO) terms associated with predicted PIP-binding proteins within each taxon revealed a broad range of functions, including compelling links to processes putatively involved in symbiosis regulation. This analysis establishes a baseline for current understanding of the PI pathway across anthozoans and Symbiodiniaceae, and thus a framework to target future research.

12.
J Exp Biol ; 224(22)2021 11 15.
Article in English | MEDLINE | ID: mdl-34661236

ABSTRACT

Tropical lagoon-inhabiting organisms live in highly irradiated ecosystems and are particularly susceptible to thermal stress resulting from climate change. However, despite living close to their thermal maxima, stress response mechanisms found in these organisms are poorly understood. We used a novel physiological-proteomic approach for sponges to describe the stress response mechanisms of the lagoon-inhabiting sponge Amphimedon navalis, when exposed to elevated seawater temperatures of +2°C and +4°C relative to a 26°C ambient temperature for 4 weeks. After 4 weeks of thermal exposure, the buoyant weight of the sponge experienced a significant decline, while its pumping rates and oxygen consumption rates significantly increased. Proteome dynamics revealed 50 differentially abundant proteins in sponges exposed to elevated temperature, suggesting that shifts in the sponge proteome were potential drivers of physiological dysfunction. Thermal stress promoted an increase in detoxification proteins, such as catalase, suggesting that an excess of reactive oxygen species in sponge cells was responsible for the significant increase in oxygen consumption. Elevated temperature also disrupted cellular growth and cell proliferation, promoting the loss of sponge biomass, and the high abundance of multiple α-tubulin chain proteins also indicated an increase in cytoskeletal activities within sponge cells, which may have induced the increase in sponge pumping rate. Our results show that sustained thermal exposure in susceptible lagoonal sponges may induce significant disruption of cellular homeostasis, leading to physiological dysfunction, and that a combined physiological-proteomic approach may provide new insights into physiological functions and cellular processes occurring in sponges.


Subject(s)
Ecosystem , Porifera , Animals , Climate Change , Protein Transport , Proteomics , Stress, Physiological
13.
Trends Microbiol ; 29(4): 320-333, 2021 04.
Article in English | MEDLINE | ID: mdl-33041180

ABSTRACT

The cnidarian-dinoflagellate symbiosis is of huge importance as it underpins the success of coral reefs, yet we know very little about how the host cnidarian and its dinoflagellate endosymbionts communicate with each other to form a functionally integrated unit. Here, we review the current knowledge of interpartner molecular signaling in this symbiosis, with an emphasis on lipids, glycans, reactive species, biogenic volatiles, and noncoding RNA. We draw upon evidence of these compounds from recent omics-based studies of cnidarian-dinoflagellate symbiosis and discuss the signaling roles that they play in other, better-studied symbioses. We then consider how improved knowledge of interpartner signaling might be used to develop solutions to the coral reef crisis by, for example, engineering more thermally resistant corals.


Subject(s)
Dinoflagellida/genetics , Dinoflagellida/physiology , Signal Transduction/genetics , Symbiosis/genetics , Animals , Coral Reefs , Lipid Metabolism , Lipids , Signal Transduction/physiology , Symbiosis/physiology
14.
Sci Rep ; 10(1): 20473, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235281

ABSTRACT

In oligotrophic waters, cnidarian hosts rely on symbiosis with their photosynthetic dinoflagellate partners (family Symbiodiniaceae) to obtain the nutrients they need to grow, reproduce and survive. For this symbiosis to persist, the host must regulate the growth and proliferation of its symbionts. One of the proposed regulatory mechanisms is arrest of the symbiont cell cycle in the G1 phase, though the cellular mechanisms involved remain unknown. Cell-cycle progression in eukaryotes is controlled by the conserved family of cyclin-dependent kinases (CDKs) and their partner cyclins. We identified CDKs and cyclins in different Symbiodiniaceae species and examined their relationship to homologs in other eukaryotes. Cyclin proteins related to eumetazoan cell-cycle-related cyclins A, B, D, G/I and Y, and transcriptional cyclin L, were identified in the Symbiodiniaceae, alongside several alveolate-specific cyclin A/B proteins, and proteins related to protist P/U-type cyclins and apicomplexan cyclins. The largest expansion of Symbiodiniaceae cyclins was in the P/U-type cyclin groups. Proteins related to eumetazoan cell-cycle-related CDKs (CDK1) were identified as well as transcription-related CDKs. The largest expansion of CDK groups was, however, in alveolate-specific groups which comprised 11 distinct CDK groups (CDKA-J) with CDKB being the most widely distributed CDK protein. As a result of its phylogenetic position, conservation across Symbiodiniaceae species, and the presence of the canonical CDK motif, CDKB emerged as a likely candidate for a Saccharomyces cerevisiae Cdc28/Pho85-like homolog in Symbiodiniaceae. Similar to cyclins, two CDK-groups found in Symbiodiniaceae species were solely associated with apicomplexan taxa. A comparison of Breviolum minutum CDK and cyclin gene expression between free-living and symbiotic states showed that several alveolate-specific CDKs and two P/U-type cyclins exhibited altered expression in hospite, suggesting that symbiosis influences the cell cycle of symbionts on a molecular level. These results highlight the divergence of Symbiodiniaceae cell-cycle proteins across species. These results have important implications for host control of the symbiont cell cycle in novel cnidarian-dinoflagellate symbioses.


Subject(s)
Cell Cycle Proteins/genetics , Cnidaria/parasitology , Computational Biology/methods , Dinoflagellida/metabolism , Amino Acid Motifs , Animals , Cell Cycle Proteins/chemistry , Dinoflagellida/classification , Dinoflagellida/genetics , Gene Expression Profiling , Gene Expression Regulation , Phylogeny , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Sequence Alignment , Sequence Analysis, RNA , Species Specificity , Symbiosis
15.
Environ Microbiol ; 22(9): 3741-3753, 2020 09.
Article in English | MEDLINE | ID: mdl-32592285

ABSTRACT

Hosting different symbiont species can affect inter-partner nutritional fluxes within the cnidarian-dinoflagellate symbiosis. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we measured the spatial incorporation of photosynthetically fixed 13 C and heterotrophically derived 15 N into host and symbiont cells of the model symbiotic cnidarian Aiptasia (Exaiptasia pallida) when colonized with its native symbiont Breviolum minutum or the non-native Durusdinium trenchii. Breviolum minutum exhibited high photosynthetic carbon assimilation per cell and translocation to host tissue throughout symbiosis establishment, whereas D. trenchii assimilated significantly less carbon, but obtained more host nitrogen. These findings suggest that D. trenchii has less potential to provide photosynthetically fixed carbon to the host despite obtaining considerable amounts of heterotrophically derived nitrogen. These sub-cellular events help explain previous observations that demonstrate differential effects of D. trenchii compared to B. minutum on the host transcriptome, proteome, metabolome and host growth and asexual reproduction. Together, these differential effects suggest that the non-native host-symbiont pairing is sub-optimal with respect to the host's nutritional benefits under normal environmental conditions. This contributes to our understanding of the ways in which metabolic integration impacts the benefits of a symbiotic association, and the potential evolution of novel host-symbiont pairings.


Subject(s)
Dinoflagellida/metabolism , Sea Anemones/metabolism , Animals , Carbon/metabolism , Dinoflagellida/genetics , Metabolome , Nitrogen/metabolism , Photosynthesis , Proteome , Sea Anemones/genetics , Sea Anemones/microbiology , Symbiosis , Transcriptome
16.
ISME J ; 13(9): 2334-2345, 2019 09.
Article in English | MEDLINE | ID: mdl-31118473

ABSTRACT

The acquisition of thermally tolerant algal symbionts by corals has been proposed as a natural or assisted mechanism of increasing coral reef resilience to anthropogenic climate change, but the cell-level processes determining the performance of new symbiotic associations are poorly understood. We used liquid chromatography-mass spectrometry to investigate the effects of an experimentally induced symbiosis on the host proteome of the model sea anemone Exaiptasia pallida. Aposymbiotic specimens were colonised by either the homologous dinoflagellate symbiont (Breviolum minutum) or a thermally tolerant, ecologically invasive heterologous symbiont (Durusdinium trenchii). Anemones containing D. trenchii exhibited minimal expression of Niemann-Pick C2 proteins, which have predicted biochemical roles in sterol transport and cell recognition, and glutamine synthetases, which are thought to be involved in nitrogen assimilation and recycling between partners. D. trenchii-colonised anemones had higher expression of methionine-synthesising betaine-homocysteine S-methyltransferases and proteins with predicted oxidative stress response functions. Multiple lysosome-associated proteins were less abundant in both symbiotic treatments compared with the aposymbiotic treatment. The differentially abundant proteins are predicted to represent pathways that may be involved in nutrient transport or resource allocation between partners. These results provide targets for specific experiments to elucidate the mechanisms underpinning compensatory physiology in the coral-dinoflagellate symbiosis.


Subject(s)
Dinoflagellida/physiology , Proteome/genetics , Sea Anemones/microbiology , Symbiosis , Animals , Coral Reefs , Dinoflagellida/chemistry , Dinoflagellida/genetics , Hot Temperature , Oxidative Stress , Proteins/genetics , Proteins/metabolism , Proteome/metabolism , Proteomics , Sea Anemones/genetics , Sea Anemones/physiology
17.
Proc Biol Sci ; 285(1892)2018 11 28.
Article in English | MEDLINE | ID: mdl-30487315

ABSTRACT

Metabolite exchange is fundamental to the viability of the cnidarian-Symbiodiniaceae symbiosis and survival of coral reefs. Coral holobiont tolerance to environmental change might be achieved through changes in Symbiodiniaceae species composition, but differences in the metabolites supplied by different Symbiodiniaceae species could influence holobiont fitness. Using 13C stable-isotope labelling coupled to gas chromatography-mass spectrometry, we characterized newly fixed carbon fate in the model cnidarian Exaiptasia pallida (Aiptasia) when experimentally colonized with either native Breviolum minutum or non-native Durusdinium trenchii Relative to anemones containing B. minutum, D. trenchii-colonized hosts exhibited a 4.5-fold reduction in 13C-labelled glucose and reduced abundance and diversity of 13C-labelled carbohydrates and lipogenesis precursors, indicating symbiont species-specific modifications to carbohydrate availability and lipid storage. Mapping carbon fate also revealed significant alterations to host molecular signalling pathways. In particular, D. trenchii-colonized hosts exhibited a 40-fold reduction in 13C-labelled scyllo-inositol, a potential interpartner signalling molecule in symbiosis specificity. 13C-labelling also highlighted differential antioxidant- and ammonium-producing pathway activities, suggesting physiological responses to different symbiont species. Such differences in symbiont metabolite contribution and host utilization may limit the proliferation of stress-driven symbioses; this contributes valuable information towards future scenarios that select in favour of less-competent symbionts in response to environmental change.


Subject(s)
Dinoflagellida/physiology , Energy Metabolism , Sea Anemones/physiology , Symbiosis , Animals
18.
Mol Phylogenet Evol ; 120: 307-320, 2018 03.
Article in English | MEDLINE | ID: mdl-29233707

ABSTRACT

Metabolic exchange between cnidarians and their symbiotic dinoflagellates is central to maintaining their mutualistic relationship. Sugars are translocated to the host, while ammonium and nitrate are utilized by the dinoflagellates (Symbiodinium spp.). We investigated membrane protein sequences of each partner to identify potential transporter proteins that move sugars into cnidarian cells and nitrogen products into Symbiodinium cells. We examined the facilitated glucose transporters (GLUT), sodium/glucose cotransporters (SGLT), and aquaporin (AQP) channels in the cnidarian host as mechanisms for sugar uptake, and the ammonium and high-affinity nitrate transporters (AMT and NRT2, respectively) in the algal symbiont as mechanisms for nitrogen uptake. Homologous protein sequences were used for phylogenetic analysis and tertiary structure deductions. In cnidarians, we identified putative glucose transporters of the GLUT family and glycerol transporting AQP proteins, as well as sodium monocarboxylate transporters and sodium myo-inositol cotransporters homologous to SGLT proteins. We hypothesize that cnidarians use GLUT proteins as the primary mechanism for glucose uptake, while glycerol moves into cells by passive diffusion. We also identified putative AMT proteins in several Symbiodinium clades and putative NRT2 proteins only in a single clade. We further observed an upregulation of expressed putative AMT proteins in Symbiodinium, which may have emerged as an adaptation to conditions experienced inside the host cell. This study is the first to identify transporter sequences from a diversity of cnidarian species and Symbiodinium clades, which will be useful for future experimental analyses of the host-symbiont proteome and the nutritional exchange of Symbiodinium cells in hospite.


Subject(s)
Cnidaria/classification , Dinoflagellida/classification , Phylogeny , Animals , Anion Transport Proteins/chemistry , Anion Transport Proteins/classification , Anion Transport Proteins/genetics , Aquaporins/chemistry , Aquaporins/classification , Aquaporins/genetics , Cnidaria/metabolism , Computational Biology , Dinoflagellida/metabolism , Nitrate Transporters , Protein Structure, Tertiary , Sodium-Glucose Transport Proteins/chemistry , Sodium-Glucose Transport Proteins/classification , Sodium-Glucose Transport Proteins/genetics , Symbiosis/physiology
19.
Proc Natl Acad Sci U S A ; 114(50): 13194-13199, 2017 12 12.
Article in English | MEDLINE | ID: mdl-29158383

ABSTRACT

The relationship between corals and dinoflagellates of the genus Symbiodinium is fundamental to the functioning of coral ecosystems. It has been suggested that reef corals may adapt to climate change by changing their dominant symbiont type to a more thermally tolerant one, although the capacity for such a shift is potentially hindered by the compatibility of different host-symbiont pairings. Here we combined transcriptomic and metabolomic analyses to characterize the molecular, cellular, and physiological processes that underlie this compatibility, with a particular focus on Symbiodinium trenchii, an opportunistic, thermally tolerant symbiont that flourishes in coral tissues after bleaching events. Symbiont-free individuals of the sea anemone Exaiptasia pallida (commonly referred to as Aiptasia), an established model system for the study of the cnidarian-dinoflagellate symbiosis, were colonized with the "normal" (homologous) symbiont Symbiodinium minutum and the heterologous S. trenchii Analysis of the host gene and metabolite expression profiles revealed that heterologous symbionts induced an expression pattern intermediate between the typical symbiotic state and the aposymbiotic state. Furthermore, integrated pathway analysis revealed that increased catabolism of fixed carbon stores, metabolic signaling, and immune processes occurred in response to the heterologous symbiont type. Our data suggest that both nutritional provisioning and the immune response induced by the foreign "invader" are important factors in determining the capacity of corals to adapt to climate change through the establishment of novel symbioses.


Subject(s)
Dinoflagellida/genetics , Sea Anemones/genetics , Symbiosis/genetics , Animals , Coral Reefs , Dinoflagellida/metabolism , Dinoflagellida/physiology , Metabolome , Oxidative Stress , Sea Anemones/metabolism , Sea Anemones/physiology , Symbiosis/immunology , Transcriptome
20.
J Proteome Res ; 16(6): 2121-2134, 2017 06 02.
Article in English | MEDLINE | ID: mdl-28474894

ABSTRACT

Coral bleaching has devastating effects on coral survival and reef ecosystem function, but many of the fundamental cellular effects of thermal stress on cnidarian physiology are unclear. We used label-free liquid chromatography-tandem mass spectrometry to compare the effects of rapidly (33.5 °C, 24 h) and gradually (30 and 33.5 °C, 12 days) elevated temperatures on the proteome of the model symbiotic anemone Aiptasia. We identified 2133 proteins in Aiptasia, 136 of which were differentially abundant between treatments. Thermal shock, but not acclimation, resulted in significant abundance changes in 104 proteins, including those involved in protein folding and synthesis, redox homeostasis, and central metabolism. Nineteen abundant structural proteins showed particularly reduced abundance, demonstrating proteostasis disruption and potential protein synthesis inhibition. Heat shock induced antioxidant mechanisms and proteins involved in stabilizing nascent proteins, preventing protein aggregation and degrading damaged proteins, which is indicative of endoplasmic reticulum stress. Host proteostasis disruption occurred before either bleaching or symbiont photoinhibition was detected, suggesting host-derived reactive oxygen species production as the proximate cause of thermal damage. The pronounced abundance changes in endoplasmic reticulum proteins associated with proteostasis and protein turnover indicate that these processes are essential in the cellular response of symbiotic cnidarians to severe thermal stress.


Subject(s)
Anthozoa/metabolism , Endoplasmic Reticulum Stress , Heat-Shock Response/physiology , Proteostasis , Symbiosis , Animals , Anthozoa/chemistry , Chromatography, Liquid , Oxidation-Reduction , Protein Biosynthesis , Protein Folding , Proteomics/methods , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...