Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Genome Biol ; 25(1): 228, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-39175058

ABSTRACT

BACKGROUND: The emergence of the SARS-CoV-2 virus has highlighted the importance of genomic epidemiology in understanding the evolution of pathogens and guiding public health interventions. The Omicron variant in particular has underscored the role of epistasis in the evolution of lineages with both higher infectivity and immune escape, and therefore the necessity to update surveillance pipelines to detect them early on. RESULTS: In this study, we apply a method based on mutual information between positions in a multiple sequence alignment, which is capable of scaling up to millions of samples. We show how it can reliably predict known experimentally validated epistatic interactions, even when using as little as 10,000 sequences, which opens the possibility of making it a near real-time prediction system. We test this possibility by modifying the method to account for the sample collection date and apply it retrospectively to multiple sequence alignments for each month between March 2020 and March 2023. We detected a cornerstone epistatic interaction in the Spike protein between codons 498 and 501 as soon as seven samples with a double mutation were present in the dataset, thus demonstrating the method's sensitivity. We test the ability of the method to make inferences about emerging interactions by testing candidates predicted after March 2023, which we validate experimentally. CONCLUSIONS: We show how known epistatic interaction in SARS-CoV-2 can be detected with high sensitivity, and how emerging ones can be quickly prioritized for experimental validation, an approach that could be implemented downstream of pandemic genome sequencing efforts.


Subject(s)
COVID-19 , Epistasis, Genetic , Genome, Viral , SARS-CoV-2 , SARS-CoV-2/genetics , Humans , COVID-19/genetics , COVID-19/virology , Spike Glycoprotein, Coronavirus/genetics , Sequence Alignment , Mutation
2.
Allergy ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39049686

ABSTRACT

BACKGROUND: Recently, it has been questioned whether vaccination of patients with inflammatory (auto)immune diseases under anti-tumor necrosis factor (TNF) treatment leads to impaired vaccine-induced immune responses and protection against breakthrough infections. However, the effects of TNF blockade on short- and long-term immune responses after repeated vaccination remain unclear. Vaccination studies have shown that initial short-term IgG antibodies (Abs) carry highly galactosylated and sialylated Fc glycans, whilst long-term IgG Abs have low levels of galactosylation and sialylation and are most likely generated by long-lived plasma cells (PCs) derived primarily from the germinal center (GC) response. Thus, IgG Fc glycosylation patterns may be applicable to distinguish short- and long-term vaccine responses after repeated vaccination under the influence of anti-TNF treatment. METHODS: We used COVID-19 vaccination as a model to investigate vaccine-induced IgG subclass levels and Fc glycosylation patterns, B cell subsets, and effector functions of short- and long-term Ab responses after up to three vaccinations in patients on anti-TNF or other immunosuppressive treatments and in healthy individuals. Using TriNetX, a global healthcare database, we determined the risk of SARS-CoV-2 breakthrough infections in vaccinated patients treated with anti-TNF or other immunosuppressive drugs. RESULTS: Anti-TNF treatment reduced the long-term abundance of all anti-S IgG subclasses with low levels of galactosylation and sialylation. Re-activation of potential memory B cells initially generated highly galactosylated and sialylated IgG antibodies, which were progressively reduced after each booster dose in anti-TNF-treated patients, especially in the elderly. The reduced short- and long-term IgG (1) levels in anti-TNF-treated patients correlated with diminished functional activity and an increased risk for the development of COVID-19. CONCLUSIONS: The data suggest that anti-TNF treatment reduces both GC-dependent long-lived PCs and GC-dependent memory B cell-derived short-lived PCs, hence both the long- and short-term IgG subclass responses, respectively, after repeated vaccination. We propose that anti-TNF therapy, especially in the elderly, reduces the benefit of booster vaccination.

3.
Eur J Immunol ; 54(7): e2451056, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38593351

ABSTRACT

COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , SARS-CoV-2 , Somatic Hypermutation, Immunoglobulin , SARS-CoV-2/immunology , Humans , Somatic Hypermutation, Immunoglobulin/genetics , COVID-19/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Memory B Cells/immunology , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Antibodies, Monoclonal/immunology , B-Lymphocytes/immunology , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/immunology , Immunologic Memory/immunology , COVID-19 Vaccines/immunology
5.
PLoS One ; 16(12): e0260575, 2021.
Article in English | MEDLINE | ID: mdl-34851998

ABSTRACT

The economic and humanistic impact of COVID-19 pandemic is enormous globally. No definitive treatment exists, hence accelerated development and approval of COVID-19 vaccines, offers a unique opportunity for COVID-19 prevention and control. Vaccine hesitancy may limit the success of vaccine distribution in Africa, therefore we assessed the potentials for coronavirus vaccine hesitancy and its determinants among Africans. An online cross-sectional African-wide survey was administered in Arabic, English, and French languages. Questions on demographics, self-reported health status, vaccine literacy, knowledge and perception on vaccines, past experience, behavior, infection risk, willingness to receive and affordability of the SARS-COV-2 vaccine were asked. Data were subjected to descriptive and inferential statistics. A total of 5,416 individuals completed the survey. Approximately, 94% were residents of 34 African countries while the other Africans live in the Diaspora. Only 63% of all participants surveyed were willing to receive the COVID-19 vaccination as soon as possible and 79% were worried about its side effects. Thirty-nine percent expressed concerns of vaccine-associated infection. The odds of vaccine hesitancy was 0.28 (95% CI: 0.22, 0.30) among those who believed their risk of infection was very high, compared to those who believed otherwise. The odds of vaccine hesitancy was one-fifth (OR = 0.21, 95% CI: 0.16, 0.28) among those who believed their risk of falling sick was very high, compared to those who believed their risk of falling very sick was very low. The OR of vaccine hesitancy was 2.72 (95% CI: 2.24, 3.31) among those who have previously refused a vaccine for themselves or their child compared to counterparts with no self-reported history of vaccine hesitancy. Participants want the vaccines to be mandatory (40%), provided free of charge (78%) and distributed in homes and offices (44%). COVID-19 vaccine hesitancy is substantial among Africans based on perceived risk of coronavirus infection and past experiences.


Subject(s)
Black People/psychology , COVID-19/prevention & control , Vaccination/psychology , Adolescent , Adult , Aged , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross-Sectional Studies , Female , Health Literacy , Health Status , Humans , Knowledge , Male , Middle Aged , SARS-CoV-2/isolation & purification , Surveys and Questionnaires , Young Adult
6.
Pathogens ; 5(1)2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26938565

ABSTRACT

The authors wish to make the following corrections to their paper [1].[...].

7.
Pathogens ; 4(2): 229-55, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25984911

ABSTRACT

Group A rotaviruses (RV) are the major cause of acute gastroenteritis in infants and young children globally. Waterborne transmission of RV and the presence of RV in water sources are of major public health importance. In this paper, we present the Global Waterborne Pathogen model for RV (GloWPa-Rota model) to estimate the global distribution of RV emissions to surface water. To our knowledge, this is the first model to do so. We review the literature to estimate three RV specific variables for the model: incidence, excretion rate and removal during wastewater treatment. We estimate total global RV emissions to be 2 × 1018 viral particles/grid/year, of which 87% is produced by the urban population. Hotspot regions with high RV emissions are urban areas in densely populated parts of the world, such as Bangladesh and Nigeria, while low emissions are found in rural areas in North Russia and the Australian desert. Even for industrialized regions with high population density and without tertiary treatment, such as the UK, substantial emissions are estimated. Modeling exercises like the one presented in this paper provide unique opportunities to further study these emissions to surface water, their sources and scenarios for improved management.

SELECTION OF CITATIONS
SEARCH DETAIL