Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Med Sci Sports Exerc ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39010311

ABSTRACT

PURPOSE: Resistance training may be empirically believed to increase passive muscle stiffness. Meanwhile, a recent study showed that the passive stiffness of a specific hamstring muscle acutely decreased after eccentric-only resistance exercise at long muscle lengths with a long contraction duration (LL). To extend this finding, the present study investigated the chronic effects of eccentric-only resistance training with LL at different weekly frequencies on the passive stiffness of the biarticular hamstring muscles. METHODS: Thirty-six healthy young males were assigned into two training groups with two and three weekly sessions (W2 and W3, n = 12, respectively) and a control group (CON, n = 12). The participants in both training groups performed eccentric-only stiff-leg deadlift at 50-100% of exercise range of motion (0% = upright position) with 5 s per repetition for 10 weeks. Before and after the intervention period, the shear moduli of the biarticular hamstring muscles, maximal voluntary isometric torque of knee flexion, and volumes of the individual hamstring muscles were measured. RESULTS: In W3, the shear modulus of the semimembranosus (-11.4%) significantly decreased, whereas those of the other biarticular muscles did not change. There were no significant changes in the shear moduli of the biarticular hamstring muscles in W2 or CON. The isometric torque (20.3 and 26.2%, respectively) and semimembranosus volume (5.7% and 7.4%, respectively) were significantly increased in W2 and W3. CONCLUSIONS: Passive stiffness of a specific muscle could be chronically decreased when eccentric-only resistance training with LL is performed at a relatively high weekly frequency with a high total training volume. Our training modality may be a promising strategy for decreasing passive muscle stiffness while increasing muscular strength and size.

2.
J Clin Med ; 13(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38541851

ABSTRACT

Background: Identifying programmed death-ligand-1 (PD-L1) expression is crucial for optimizing treatment strategies involving immune checkpoint inhibitors. However, the role of intratumoral metabolic heterogeneity specifically derived from 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) images in predicting PD-L1 expression in patients with newly diagnosed non-small cell lung cancer (NSCLC) remains unexplored. Here, we investigated the association between FDG PET texture features and PD-L1 expression by retrospectively analyzing the data of patients newly diagnosed with NSCLC who underwent FDG PET/CT scans and PD-L1 immunohistochemical staining before treatment. Methods: Patients were categorized based on their tumor proportion scores (TPSs) into negative-, low-, and high-PD-L1 expression groups. We computed the maximum standardized uptake value and 31 texture features for the primary tumor from PET images and compared differences in parameters among the groups. Results: Of the 83 patients, 12, 45, and 26 were assigned to the negative-, low-, and high-PD-L1 expression groups, respectively. Six specific texture features (low gray-level run emphasis, short-run low gray-level emphasis, long-run high gray-level emphasis, low gray-level zone emphasis, high gray-level zone emphasis, and short-zone low gray-level emphasis) helped distinguish among all possible combinations. Conclusions: Our findings revealed that FDG PET texture features are potential imaging biomarkers for predicting PD-L1 expression in patients newly diagnosed with NSCLC.

SELECTION OF CITATIONS
SEARCH DETAIL