Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
2.
Eur Respir J ; 63(1)2024 01.
Article in English | MEDLINE | ID: mdl-38097206

ABSTRACT

BACKGROUND: Preserved ratio impaired spirometry (PRISm) is defined as a forced expiratory volume in 1 s (FEV1) <80% predicted and FEV1/forced vital capacity ≥0.70. PRISm is associated with respiratory symptoms and comorbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated comorbidities. METHODS: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected single nucleotide polymorphisms (SNPs) reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait linkage disequilibrium score regression to estimate genome-wide genetic correlation between PRISm and pulmonary and extrapulmonary traits. Phenome-wide association studies of top SNPs were performed. RESULTS: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg=0.62, p<0.001) was observed, and genetic correlation with type 2 diabetes (rg=0.12, p=0.007). Phenome-wide association studies showed that 18 of 22 signals were associated with diabetic traits and seven with blood pressure traits. CONCLUSION: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals, rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B), have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extrapulmonary comorbidity.


Subject(s)
Diabetes Mellitus, Type 2 , Pulmonary Disease, Chronic Obstructive , Humans , Genome-Wide Association Study , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Diabetes Mellitus, Type 2/genetics , Lung , Forced Expiratory Volume/genetics , Spirometry , Vital Capacity
3.
Sci Rep ; 13(1): 9254, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286633

ABSTRACT

Privacy protection is a core principle of genomic but not proteomic research. We identified independent single nucleotide polymorphism (SNP) quantitative trait loci (pQTL) from COPDGene and Jackson Heart Study (JHS), calculated continuous protein level genotype probabilities, and then applied a naïve Bayesian approach to link SomaScan 1.3K proteomes to genomes for 2812 independent subjects from COPDGene, JHS, SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) and Multi-Ethnic Study of Atherosclerosis (MESA). We correctly linked 90-95% of proteomes to their correct genome and for 95-99% we identify the 1% most likely links. The linking accuracy in subjects with African ancestry was lower (~ 60%) unless training included diverse subjects. With larger profiling (SomaScan 5K) in the Atherosclerosis Risk Communities (ARIC) correct identification was > 99% even in mixed ancestry populations. We also linked proteomes-to-proteomes and used the proteome only to determine features such as sex, ancestry, and first-degree relatives. When serial proteomes are available, the linking algorithm can be used to identify and correct mislabeled samples. This work also demonstrates the importance of including diverse populations in omics research and that large proteomic datasets (> 1000 proteins) can be accurately linked to a specific genome through pQTL knowledge and should not be considered unidentifiable.


Subject(s)
Atherosclerosis , Proteome , Humans , Proteome/genetics , Bayes Theorem , Privacy , Genome-Wide Association Study , Atherosclerosis/genetics , Polymorphism, Single Nucleotide
4.
EBioMedicine ; 83: 104206, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35944348

ABSTRACT

BACKGROUND: Age-related comorbidities such as chronic obstructive pulmonary disease (COPD) are common in people living with human immunodeficiency virus (PLWH). We investigated the relationship between COPD and the epigenetic age of the airway epithelium and peripheral blood of PLWH. METHODS: Airway epithelial brushings from 34 PLWH enrolled in the St. Paul's Hospital HIV Bronchoscopy cohort and peripheral blood from 378 PLWH enrolled in The Strategic Timing of Antiretroviral Treatment (START) study were profiled for DNA methylation. The DNA methylation biomarker of age and healthspan, GrimAge, was calculated in both tissue compartments. We tested the association of GrimAge with COPD in the airway epithelium and airflow obstruction as defined by an FEV1/FVC<0.70, and FEV1 decline over 6 years in blood. FINDINGS: The airway epithelium of PLWH with COPD was associated with greater GrimAge residuals compared to PLWH without COPD (Beta=3.18, 95%CI=1.06-5.31, P=0.005). In blood, FEV1/FVC

Subject(s)
HIV Infections , Pulmonary Disease, Chronic Obstructive , Aging/genetics , Biomarkers , British Columbia , Cohort Studies , Epigenesis, Genetic , HIV Infections/complications , HIV Infections/genetics , Humans , Lung , Pulmonary Disease, Chronic Obstructive/genetics
5.
Am J Respir Crit Care Med ; 206(3): 321-336, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35536696

ABSTRACT

Rationale: Methylation integrates factors present at birth and modifiable across the lifespan that can influence pulmonary function. Studies are limited in scope and replication. Objectives: To conduct large-scale epigenome-wide meta-analyses of blood DNA methylation and pulmonary function. Methods: Twelve cohorts analyzed associations of methylation at cytosine-phosphate-guanine probes (CpGs), using Illumina 450K or EPIC/850K arrays, with FEV1, FVC, and FEV1/FVC. We performed multiancestry epigenome-wide meta-analyses (total of 17,503 individuals; 14,761 European, 2,549 African, and 193 Hispanic/Latino ancestries) and interpreted results using integrative epigenomics. Measurements and Main Results: We identified 1,267 CpGs (1,042 genes) differentially methylated (false discovery rate, <0.025) in relation to FEV1, FVC, or FEV1/FVC, including 1,240 novel and 73 also related to chronic obstructive pulmonary disease (1,787 cases). We found 294 CpGs unique to European or African ancestry and 395 CpGs unique to never or ever smokers. The majority of significant CpGs correlated with nearby gene expression in blood. Findings were enriched in key regulatory elements for gene function, including accessible chromatin elements, in both blood and lung. Sixty-nine implicated genes are targets of investigational or approved drugs. One example novel gene highlighted by integrative epigenomic and druggable target analysis is TNFRSF4. Mendelian randomization and colocalization analyses suggest that epigenome-wide association study signals capture causal regulatory genomic loci. Conclusions: We identified numerous novel loci differentially methylated in relation to pulmonary function; few were detected in large genome-wide association studies. Integrative analyses highlight functional relevance and potential therapeutic targets. This comprehensive discovery of potentially modifiable, novel lung function loci expands knowledge gained from genetic studies, providing insights into lung pathogenesis.


Subject(s)
DNA Methylation , Epigenome , CpG Islands , DNA Methylation/genetics , Epigenesis, Genetic/genetics , Epigenomics , Genome-Wide Association Study , Humans , Infant, Newborn , Lung
6.
Chest ; 161(5): 1155-1166, 2022 05.
Article in English | MEDLINE | ID: mdl-35104449

ABSTRACT

BACKGROUND: Some people have characteristics of both asthma and COPD (asthma-COPD overlap), and evidence suggests they experience worse outcomes than those with either condition alone. RESEARCH QUESTION: What is the genetic architecture of asthma-COPD overlap, and do the determinants of risk for asthma-COPD overlap differ from those for COPD or asthma? STUDY DESIGN AND METHODS: We conducted a genome-wide association study in 8,068 asthma-COPD overlap case subjects and 40,360 control subjects without asthma or COPD of European ancestry in UK Biobank (stage 1). We followed up promising signals (P < 5 × 10-6) that remained associated in analyses comparing (1) asthma-COPD overlap vs asthma-only control subjects, and (2) asthma-COPD overlap vs COPD-only control subjects. These variants were analyzed in 12 independent cohorts (stage 2). RESULTS: We selected 31 independent variants for further investigation in stage 2, and discovered eight novel signals (P < 5 × 10-8) for asthma-COPD overlap (meta-analysis of stage 1 and 2 studies). These signals suggest a spectrum of shared genetic influences, some predominantly influencing asthma (FAM105A, GLB1, PHB, TSLP), others predominantly influencing fixed airflow obstruction (IL17RD, C5orf56, HLA-DQB1). One intergenic signal on chromosome 5 had not been previously associated with asthma, COPD, or lung function. Subgroup analyses suggested that associations at these eight signals were not driven by smoking or age at asthma diagnosis, and in phenome-wide scans, eosinophil counts, atopy, and asthma traits were prominent. INTERPRETATION: We identified eight signals for asthma-COPD overlap, which may represent loci that predispose to type 2 inflammation, and serious long-term consequences of asthma.


Subject(s)
Asthma , Pulmonary Disease, Chronic Obstructive , Asthma/diagnosis , Genome-Wide Association Study , Humans , Lung , Pulmonary Disease, Chronic Obstructive/complications , Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/genetics , Smoking/genetics
8.
Commun Biol ; 4(1): 700, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103634

ABSTRACT

To identify candidate causal genes of asthma, we performed a genome-wide association study (GWAS) in UK Biobank on a broad asthma definition (n = 56,167 asthma cases and 352,255 controls). We then carried out functional mapping through transcriptome-wide association studies (TWAS) and Mendelian randomization in lung (n = 1,038) and blood (n = 31,684) tissues. The GWAS reveals 72 asthma-associated loci from 116 independent significant variants (PGWAS < 5.0E-8). The most significant lung TWAS gene on 17q12-q21 is GSDMB (PTWAS = 1.42E-54). Other TWAS genes include TSLP on 5q22, RERE on 1p36, CLEC16A on 16p13, and IL4R on 16p12, which all replicated in GTEx lung (n = 515). We demonstrate that the largest fold enrichment of regulatory and functional annotations among asthma-associated variants is in the blood. We map 485 blood eQTL-regulated genes associated with asthma and 50 of them are causal by Mendelian randomization. Prioritization of druggable genes reveals known (IL4R, TSLP, IL6, TNFSF4) and potentially new therapeutic targets for asthma.


Subject(s)
Asthma/genetics , Adult , Aged , Biological Specimen Banks , Female , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Male , Middle Aged , Transcriptome , United Kingdom
9.
Sci Rep ; 11(1): 8282, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33859282

ABSTRACT

The classical M1/M2 polarity of macrophages may not be applicable to inflammatory lung diseases including chronic obstructive pulmonary disease (COPD) due to the complex microenvironment in lungs and the plasticity of macrophages. We examined macrophage sub-phenotypes in bronchoalveolar lavage (BAL) fluid in 25 participants with CD40 (a M1 marker) and CD163 (a M2 marker). Of these, we performed RNA-sequencing on each subtype in 10 patients using the Illumina NextSeq 500. Approximately 25% of the macrophages did not harbor classical M1 or M2 surface markers (double negative, DN), and these cells were significantly enriched in COPD patients compared with non-COPD patients (46.7% vs. 14.5%, p < 0.001). 1886 genes were differentially expressed in the DN subtype compared with  all other subtypes at a 10% false discovery rate. The 602 up-regulated genes included 15 mitochondrial genes and were enriched in 86 gene ontology (GO) biological processes including inflammatory responses. Modules associated with cellular functions including oxidative phosphorylation were significantly down-regulated in the DN subtype. Macrophages in the human BAL fluid, which were negative for both M1/M2 surface markers, harbored a gene signature that was pro-inflammatory and suggested dysfunction in cellular homeostasis. These macrophages may contribute to the pathogenesis and manifestations of inflammatory lung diseases such as COPD.


Subject(s)
Antigens, CD , Antigens, Differentiation, Myelomonocytic , Antigens, Surface , Bronchoalveolar Lavage Fluid/cytology , CD40 Antigens , Macrophages , Pulmonary Disease, Chronic Obstructive/etiology , Receptors, Cell Surface , Homeostasis/immunology , Humans , Inflammation/genetics , Inflammation/immunology , Macrophages/immunology , Oxidative Phosphorylation
10.
PLoS Genet ; 17(3): e1009254, 2021 03.
Article in English | MEDLINE | ID: mdl-33667223

ABSTRACT

Squamous cell carcinomas (SqCC) of the aerodigestive tract have similar etiological risk factors. Although genetic risk variants for individual cancers have been identified, an agnostic, genome-wide search for shared genetic susceptibility has not been performed. To identify novel and pleotropic SqCC risk variants, we performed a meta-analysis of GWAS data on lung SqCC (LuSqCC), oro/pharyngeal SqCC (OSqCC), laryngeal SqCC (LaSqCC) and esophageal SqCC (ESqCC) cancers, totaling 13,887 cases and 61,961 controls of European ancestry. We identified one novel genome-wide significant (Pmeta<5x10-8) aerodigestive SqCC susceptibility loci in the 2q33.1 region (rs56321285, TMEM273). Additionally, three previously unknown loci reached suggestive significance (Pmeta<5x10-7): 1q32.1 (rs12133735, near MDM4), 5q31.2 (rs13181561, TMEM173) and 19p13.11 (rs61494113, ABHD8). Multiple previously identified loci for aerodigestive SqCC also showed evidence of pleiotropy in at least another SqCC site, these include: 4q23 (ADH1B), 6p21.33 (STK19), 6p21.32 (HLA-DQB1), 9p21.33 (CDKN2B-AS1) and 13q13.1(BRCA2). Gene-based association and gene set enrichment identified a set of 48 SqCC-related genes rel to DNA damage and epigenetic regulation pathways. Our study highlights the importance of cross-cancer analyses to identify pleiotropic risk loci of histology-related cancers arising at distinct anatomical sites.


Subject(s)
Carcinoma, Squamous Cell/genetics , Digestive System Neoplasms/genetics , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Alleles , Biomarkers, Tumor , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Digestive System Neoplasms/metabolism , Digestive System Neoplasms/pathology , Genotype , Humans , Odds Ratio , Signal Transduction
11.
FASEB J ; 35(3): e21376, 2021 03.
Article in English | MEDLINE | ID: mdl-33605487

ABSTRACT

Emphysema, a component of chronic obstructive pulmonary disease (COPD), is characterized by irreversible alveolar destruction that results in a progressive decline in lung function. This alveolar destruction is caused by cigarette smoke, the most important risk factor for COPD. Only 15%-20% of smokers develop COPD, suggesting that unknown factors contribute to disease pathogenesis. We postulate that the aryl hydrocarbon receptor (AHR), a receptor/transcription factor highly expressed in the lungs, may be a new susceptibility factor whose expression protects against COPD. Here, we report that Ahr-deficient mice chronically exposed to cigarette smoke develop airspace enlargement concomitant with a decline in lung function. Chronic cigarette smoke exposure also increased cleaved caspase-3, lowered SOD2 expression, and altered MMP9 and TIMP-1 levels in Ahr-deficient mice. We also show that people with COPD have reduced expression of pulmonary and systemic AHR, with systemic AHR mRNA levels positively correlating with lung function. Systemic AHR was also lower in never-smokers with COPD. Thus, AHR expression protects against the development of COPD by controlling interrelated mechanisms involved in the pathogenesis of this disease. This study identifies the AHR as a new, central player in the homeostatic maintenance of lung health, providing a foundation for the AHR as a novel therapeutic target and/or predictive biomarker in chronic lung disease.


Subject(s)
Pulmonary Disease, Chronic Obstructive/etiology , Receptors, Aryl Hydrocarbon/deficiency , Aged , Aged, 80 and over , Animals , Aryl Hydrocarbon Receptor Nuclear Translocator/physiology , Emphysema/etiology , Forced Expiratory Volume , Humans , Lung/physiopathology , Male , Mice , Middle Aged , Pulmonary Disease, Chronic Obstructive/physiopathology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/physiology , Smoking/adverse effects
12.
J Infect Dis ; 223(10): 1681-1689, 2021 05 28.
Article in English | MEDLINE | ID: mdl-32959881

ABSTRACT

BACKGROUND: Whether accelerated aging develops over the course of chronic human immunodeficiency virus (HIV) infection or can be observed before significant immunosuppression on is unknown. We studied DNA methylation in blood to estimate cellular aging in persons living with HIV (PLWH) before the initiation of antiretroviral therapy (ART). METHODS: A total of 378 ART-naive PLWH who had CD4 T-cell counts >500/µL and were enrolled in the Strategic Timing of Antiretroviral Therapy trial (Pulmonary Substudy) were compared with 34 HIV-negative controls. DNA methylation was performed using the Illumina MethylationEPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in PLWH compared with controls were identified using a robust linear model. Methylation age was calculated using a previously described epigenetic clock. RESULTS: There were a total of 56 639 DMPs and 6103 DMRs at a false discovery rate of <0.1. The top 5 DMPs corresponded to genes NLRC5, VRK2, B2M, and GPR6 and were highly enriched for cancer-related pathways. PLWH had significantly higher methylation age than HIV-negative controls (P = .001), with black race, low CD4 and high CD8 T-cell counts, and duration of HIV being risk factors for age acceleration. CONCLUSIONS: PLWH before the initiation of ART and with preserved immune status show evidence of advanced methylation aging.


Subject(s)
Aging/genetics , DNA Methylation , Epigenesis, Genetic , HIV Infections , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/genetics , Humans
13.
J Allergy Clin Immunol ; 147(1): 144-157, 2021 01.
Article in English | MEDLINE | ID: mdl-32442646

ABSTRACT

BACKGROUND: Asthma is a complex disease with multiple phenotypes that may differ in disease pathobiology and treatment response. IL33 single nucleotide polymorphisms (SNPs) have been reproducibly associated with asthma. IL33 levels are elevated in sputum and bronchial biopsies of patients with asthma. The functional consequences of IL33 asthma SNPs remain unknown. OBJECTIVE: This study sought to determine whether IL33 SNPs associate with asthma-related phenotypes and with IL33 expression in lung or bronchial epithelium. This study investigated the effect of increased IL33 expression on human bronchial epithelial cell (HBEC) function. METHODS: Association between IL33 SNPs (Chr9: 5,815,786-6,657,983) and asthma phenotypes (Lifelines/DAG [Dutch Asthma GWAS]/GASP [Genetics of Asthma Severity & Phenotypes] cohorts) and between SNPs and expression (lung tissue, bronchial brushes, HBECs) was done using regression modeling. Lentiviral overexpression was used to study IL33 effects on HBECs. RESULTS: We found that 161 SNPs spanning the IL33 region associated with 1 or more asthma phenotypes after correction for multiple testing. We report a main independent signal tagged by rs992969 associating with blood eosinophil levels, asthma, and eosinophilic asthma. A second, independent signal tagged by rs4008366 presented modest association with eosinophilic asthma. Neither signal associated with FEV1, FEV1/forced vital capacity, atopy, and age of asthma onset. The 2 IL33 signals are expression quantitative loci in bronchial brushes and cultured HBECs, but not in lung tissue. IL33 overexpression in vitro resulted in reduced viability and reactive oxygen species-capturing of HBECs, without influencing epithelial cell count, metabolic activity, or barrier function. CONCLUSIONS: We identify IL33 as an epithelial susceptibility gene for eosinophilia and asthma, provide mechanistic insight, and implicate targeting of the IL33 pathway specifically in eosinophilic asthma.


Subject(s)
Asthma , Gene Expression Regulation/immunology , Genetic Predisposition to Disease , Interleukin-33 , Polymorphism, Single Nucleotide , Adult , Asthma/genetics , Asthma/immunology , Female , Genome-Wide Association Study , Humans , Interleukin-33/genetics , Interleukin-33/immunology , Male , Middle Aged
14.
Clin Epigenetics ; 12(1): 145, 2020 10 02.
Article in English | MEDLINE | ID: mdl-33008450

ABSTRACT

BACKGROUND: Mesenchymal fibroblasts are ubiquitous cells that maintain the extracellular matrix of organs. Within the lung, airway and parenchymal fibroblasts are crucial for lung development and are altered with disease, but it has been difficult to understand their roles due to the lack of distinct molecular markers. We studied genome-wide DNA methylation and gene expression in airway and parenchymal lung fibroblasts from healthy and asthmatic donors, to identify a robust cell marker and to determine if these cells are molecularly distinct in asthma. RESULTS: Airway (N = 8) and parenchymal (N = 15) lung fibroblasts from healthy individuals differed in the expression of 158 genes, and DNA methylation of 3936 CpGs (Bonferroni adjusted p value < 0.05). Differential DNA methylation between cell types was associated with differential expression of 42 genes, but no single DNA methylation CpG feature (location, effect size, number) defined the interaction. Replication of gene expression and DNA methylation in a second cohort identified TWIST1 gene expression, DNA methylation and protein expression as a cell marker of airway and parenchymal lung fibroblasts, with DNA methylation having 100% predictive discriminatory power. DNA methylation was differentially altered in parenchymal (112 regions) and airway fibroblasts (17 regions) with asthmatic status, with no overlap between regions. CONCLUSIONS: Differential methylation of TWIST1 is a robust cell marker of airway and parenchymal lung fibroblasts. Airway and parenchymal fibroblast DNA methylation are differentially altered in individuals with asthma, and the role of both cell types should be considered in the pathogenesis of asthma.


Subject(s)
Asthma/genetics , DNA Methylation/genetics , Fibroblasts/metabolism , Nuclear Proteins/metabolism , Parenchymal Tissue/cytology , Twist-Related Protein 1/metabolism , Aged , Airway Remodeling/genetics , Asthma/pathology , Biomarkers/metabolism , Case-Control Studies , CpG Islands/genetics , Female , Gene Expression , Genome-Wide Association Study/methods , Humans , Lung/pathology , Male , Middle Aged , Predictive Value of Tests
15.
Sci Rep ; 10(1): 16980, 2020 10 12.
Article in English | MEDLINE | ID: mdl-33046825

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a cytokine found to be associated with chronic obstructive pulmonary disease (COPD). However, there is no consensus on how MIF levels differ in COPD compared to control conditions and there are no reports on MIF expression in lung tissue. Here we studied gene expression of members of the MIF family MIF, D-Dopachrome Tautomerase (DDT) and DDT-like (DDTL) in a lung tissue dataset with 1087 subjects and identified single nucleotide polymorphisms (SNPs) regulating their gene expression. We found higher MIF and DDT expression in COPD patients compared to non-COPD subjects and found 71 SNPs significantly influencing gene expression of MIF and DDTL. Furthermore, the platform used to measure MIF (microarray or RNAseq) was found to influence the splice variants detected and subsequently the direction of the SNP effects on MIF expression. Among the SNPs found to regulate MIF expression, the major LD block identified was linked to rs5844572, a SNP previously found to be associated with lower diffusion capacity in COPD. This suggests that MIF may be contributing to the pathogenesis of COPD, as SNPs that influence MIF expression are also associated with symptoms of COPD. Our study shows that MIF levels are affected not only by disease but also by genetic diversity (i.e. SNPs). Since none of our significant eSNPs for MIF or DDTL have been described in GWAS for COPD or lung function, MIF expression in COPD patients is more likely a consequence of disease-related factors rather than a cause of the disease.


Subject(s)
Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/metabolism , Lung/physiology , Macrophage Migration-Inhibitory Factors/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism , Aged , Female , Gene Expression Regulation , Humans , Macrophage Migration-Inhibitory Factors/genetics , Male , Middle Aged , Polymorphism, Single Nucleotide , Pulmonary Disease, Chronic Obstructive/genetics
16.
Lancet Respir Med ; 8(7): 696-708, 2020 07.
Article in English | MEDLINE | ID: mdl-32649918

ABSTRACT

BACKGROUND: Genetic factors influence chronic obstructive pulmonary disease (COPD) risk, but the individual variants that have been identified have small effects. We hypothesised that a polygenic risk score using additional variants would predict COPD and associated phenotypes. METHODS: We constructed a polygenic risk score using a genome-wide association study of lung function (FEV1 and FEV1/forced vital capacity [FVC]) from the UK Biobank and SpiroMeta. We tested this polygenic risk score in nine cohorts of multiple ethnicities for an association with moderate-to-severe COPD (defined as FEV1/FVC <0·7 and FEV1 <80% of predicted). Associations were tested using logistic regression models, adjusting for age, sex, height, smoking pack-years, and principal components of genetic ancestry. We assessed predictive performance of models by area under the curve. In a subset of studies, we also studied quantitative and qualitative CT imaging phenotypes that reflect parenchymal and airway pathology, and patterns of reduced lung growth. FINDINGS: The polygenic risk score was associated with COPD in European (odds ratio [OR] per SD 1·81 [95% CI 1·74-1·88] and non-European (1·42 [1·34-1·51]) populations. Compared with the first decile, the tenth decile of the polygenic risk score was associated with COPD, with an OR of 7·99 (6·56-9·72) in European ancestry and 4·83 (3·45-6·77) in non-European ancestry cohorts. The polygenic risk score was superior to previously described genetic risk scores and, when combined with clinical risk factors (ie, age, sex, and smoking pack-years), showed improved prediction for COPD compared with a model comprising clinical risk factors alone (AUC 0·80 [0·79-0·81] vs 0·76 [0·75-0·76]). The polygenic risk score was associated with CT imaging phenotypes, including wall area percent, quantitative and qualitative measures of emphysema, local histogram emphysema patterns, and destructive emphysema subtypes. The polygenic risk score was associated with a reduced lung growth pattern. INTERPRETATION: A risk score comprised of genetic variants can identify a small subset of individuals at markedly increased risk for moderate-to-severe COPD, emphysema subtypes associated with cigarette smoking, and patterns of reduced lung growth. FUNDING: US National Institutes of Health, Wellcome Trust.


Subject(s)
Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/genetics , Adult , Case-Control Studies , Cohort Studies , Female , Forced Expiratory Volume , Genome-Wide Association Study , Humans , Male , Middle Aged , Phenotype , Pulmonary Disease, Chronic Obstructive/diagnosis , Risk Factors , Vital Capacity
17.
JCI Insight ; 5(8)2020 04 23.
Article in English | MEDLINE | ID: mdl-32324168

ABSTRACT

The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33-driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.


Subject(s)
Asthma/genetics , Genetic Predisposition to Disease/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , Asthma/immunology , Genotype , Humans , Lung/immunology , Phenotype , Polymorphism, Single Nucleotide , Respiratory Mucosa/immunology
18.
Nat Commun ; 11(1): 27, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31911640

ABSTRACT

Impaired lung function is often caused by cigarette smoking, making it challenging to disentangle its role in lung cancer susceptibility. Investigation of the shared genetic basis of these phenotypes in the UK Biobank and International Lung Cancer Consortium (29,266 cases, 56,450 controls) shows that lung cancer is genetically correlated with reduced forced expiratory volume in one second (FEV1: rg = 0.098, p = 2.3 × 10-8) and the ratio of FEV1 to forced vital capacity (FEV1/FVC: rg = 0.137, p = 2.0 × 10-12). Mendelian randomization analyses demonstrate that reduced FEV1 increases squamous cell carcinoma risk (odds ratio (OR) = 1.51, 95% confidence intervals: 1.21-1.88), while reduced FEV1/FVC increases the risk of adenocarcinoma (OR = 1.17, 1.01-1.35) and lung cancer in never smokers (OR = 1.56, 1.05-2.30). These findings support a causal role of pulmonary impairment in lung cancer etiology. Integrative analyses reveal that pulmonary function instruments, including 73 novel variants, influence lung tissue gene expression and implicate immune-related pathways in mediating the observed effects on lung carcinogenesis.


Subject(s)
Lung Neoplasms/genetics , Lung/physiopathology , Adult , Aged , Female , Forced Expiratory Volume , Genetic Predisposition to Disease , Humans , Lung Neoplasms/immunology , Lung Neoplasms/physiopathology , Male , Mendelian Randomization Analysis , Middle Aged , Phenotype , Polymorphism, Single Nucleotide , Prospective Studies , Respiratory Function Tests , Vital Capacity
19.
Wellcome Open Res ; 5: 111, 2020.
Article in English | MEDLINE | ID: mdl-33728380

ABSTRACT

Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 ß=0.028 [SE 0.0022] litres) than females (ß=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.

20.
Am J Respir Crit Care Med ; 201(5): 564-574, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31710517

ABSTRACT

Rationale: Idiopathic pulmonary fibrosis (IPF) is a complex lung disease characterized by scarring of the lung that is believed to result from an atypical response to injury of the epithelium. Genome-wide association studies have reported signals of association implicating multiple pathways including host defense, telomere maintenance, signaling, and cell-cell adhesion.Objectives: To improve our understanding of factors that increase IPF susceptibility by identifying previously unreported genetic associations.Methods: We conducted genome-wide analyses across three independent studies and meta-analyzed these results to generate the largest genome-wide association study of IPF to date (2,668 IPF cases and 8,591 controls). We performed replication in two independent studies (1,456 IPF cases and 11,874 controls) and functional analyses (including statistical fine-mapping, investigations into gene expression, and testing for enrichment of IPF susceptibility signals in regulatory regions) to determine putatively causal genes. Polygenic risk scores were used to assess the collective effect of variants not reported as associated with IPF.Measurements and Main Results: We identified and replicated three new genome-wide significant (P < 5 × 10-8) signals of association with IPF susceptibility (associated with altered gene expression of KIF15, MAD1L1, and DEPTOR) and confirmed associations at 11 previously reported loci. Polygenic risk score analyses showed that the combined effect of many thousands of as yet unreported IPF susceptibility variants contribute to IPF susceptibility.Conclusions: The observation that decreased DEPTOR expression associates with increased susceptibility to IPF supports recent studies demonstrating the importance of mTOR signaling in lung fibrosis. New signals of association implicating KIF15 and MAD1L1 suggest a possible role of mitotic spindle-assembly genes in IPF susceptibility.


Subject(s)
Idiopathic Pulmonary Fibrosis/genetics , Aged , Case-Control Studies , Cell Cycle Proteins/genetics , Female , Gene Expression , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kinesins/genetics , Male , Middle Aged , Risk Assessment , Signal Transduction , Spindle Apparatus , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...