Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 12(7): e9062, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35898418

ABSTRACT

Biological data are often intrinsically hierarchical (e.g., species from different genera, plants within different mountain regions), which made mixed-effects models a common analysis tool in ecology and evolution because they can account for the non-independence. Many questions around their practical applications are solved but one is still debated: Should we treat a grouping variable with a low number of levels as a random or fixed effect? In such situations, the variance estimate of the random effect can be imprecise, but it is unknown if this affects statistical power and type I error rates of the fixed effects of interest. Here, we analyzed the consequences of treating a grouping variable with 2-8 levels as fixed or random effect in correctly specified and alternative models (under- or overparametrized models). We calculated type I error rates and statistical power for all-model specifications and quantified the influences of study design on these quantities. We found no influence of model choice on type I error rate and power on the population-level effect (slope) for random intercept-only models. However, with varying intercepts and slopes in the data-generating process, using a random slope and intercept model, and switching to a fixed-effects model, in case of a singular fit, avoids overconfidence in the results. Additionally, the number and difference between levels strongly influences power and type I error. We conclude that inferring the correct random-effect structure is of great importance to obtain correct type I error rates. We encourage to start with a mixed-effects model independent of the number of levels in the grouping variable and switch to a fixed-effects model only in case of a singular fit. With these recommendations, we allow for more informative choices about study design and data analysis and make ecological inference with mixed-effects models more robust for small number of levels.

2.
Ecol Lett ; 24(6): 1251-1261, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33783944

ABSTRACT

Ecologists increasingly rely on complex computer simulations to forecast ecological systems. To make such forecasts precise, uncertainties in model parameters and structure must be reduced and correctly propagated to model outputs. Naively using standard statistical techniques for this task, however, can lead to bias and underestimation of uncertainties in parameters and predictions. Here, we explain why these problems occur and propose a framework for robust inference with complex computer simulations. After having identified that model error is more consequential in complex computer simulations, due to their more pronounced nonlinearity and interconnectedness, we discuss as possible solutions data rebalancing and adding bias corrections on model outputs or processes during or after the calibration procedure. We illustrate the methods in a case study, using a dynamic vegetation model. We conclude that developing better methods for robust inference of complex computer simulations is vital for generating reliable predictions of ecosystem responses.


Subject(s)
Ecosystem , Models, Statistical , Bayes Theorem , Computer Simulation , Forecasting , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL
...