Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Trop Med Infect Dis ; 9(9)2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39330905

ABSTRACT

Malaria and Typhoid fever are prevalent diseases in tropical regions, and both are exacerbated by unclear protocols, drug resistance, and environmental factors. Prompt and accurate diagnosis is crucial to improve accessibility and reduce mortality rates. Traditional diagnosis methods cannot effectively capture the complexities of these diseases due to the presence of similar symptoms. Although machine learning (ML) models offer accurate predictions, they operate as "black boxes" with non-interpretable decision-making processes, making it challenging for healthcare providers to comprehend how the conclusions are reached. This study employs explainable AI (XAI) models such as Local Interpretable Model-agnostic Explanations (LIME), and Large Language Models (LLMs) like GPT to clarify diagnostic results for healthcare workers, building trust and transparency in medical diagnostics by describing which symptoms had the greatest impact on the model's decisions and providing clear, understandable explanations. The models were implemented on Google Colab and Visual Studio Code because of their rich libraries and extensions. Results showed that the Random Forest model outperformed the other tested models; in addition, important features were identified with the LIME plots while ChatGPT 3.5 had a comparative advantage over other LLMs. The study integrates RF, LIME, and GPT in building a mobile app to enhance the interpretability and transparency in malaria and typhoid diagnosis system. Despite its promising results, the system's performance is constrained by the quality of the dataset. Additionally, while LIME and GPT improve transparency, they may introduce complexities in real-time deployment due to computational demands and the need for internet service to maintain relevance and accuracy. The findings suggest that AI-driven diagnostic systems can significantly enhance healthcare delivery in environments with limited resources, and future works can explore the applicability of this framework to other medical conditions and datasets.

2.
Health Informatics J ; 30(2): 14604582241260659, 2024.
Article in English | MEDLINE | ID: mdl-38860564

ABSTRACT

This paper employs the Analytical Hierarchy Process (AHP) to enhance the accuracy of differential diagnosis for febrile diseases, particularly prevalent in tropical regions where misdiagnosis may have severe consequences. The migration of health workers from developing countries has resulted in frontline health workers (FHWs) using inadequate protocols for the diagnosis of complex health conditions. The study introduces an innovative AHP-based Medical Decision Support System (MDSS) incorporating disease risk factors derived from physicians' experiential knowledge to address this challenge. The system's aggregate diagnostic factor index determines the likelihood of febrile illnesses. Compared to existing literature, AHP models with risk factors demonstrate superior prediction accuracy, closely aligning with physicians' suspected diagnoses. The model's accuracy ranges from 85.4% to 96.9% for various diseases, surpassing physicians' predictions for Lassa, Dengue, and Yellow Fevers. The MDSS is recommended for use by FHWs in communities lacking medical experts, facilitating timely and precise diagnoses, efficient application of diagnostic test kits, and reducing overhead expenses for administrators.


Subject(s)
Fever , Humans , Diagnosis, Differential , Fever/diagnosis , Decision Support Techniques , Tropical Medicine/methods , Decision Support Systems, Clinical
3.
Trop Med Infect Dis ; 8(7)2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37505648

ABSTRACT

The report of the World Health Organization (WHO) about the poor accessibility of people living in low-to-middle-income countries to medical facilities and personnel has been a concern to both professionals and nonprofessionals in healthcare. This poor accessibility has led to high morbidity and mortality rates in tropical regions, especially when such a disease presents itself with confusable symptoms that are not easily differentiable by inexperienced doctors, such as those found in febrile diseases. This prompted the development of the fuzzy cognitive map (FCM) model to serve as a decision-support tool for medical health workers in the diagnosis of febrile diseases. With 2465 datasets gathered from four states in the febrile diseases-prone regions in Nigeria with the aid of 60 medical doctors, 10 of those doctors helped in weighting and fuzzifying the symptoms, which were used to generate the FCM model. Results obtained from computations to predict diagnosis results for the 2465 patients, and those diagnosed by the physicians on the field, showed an average of 87% accuracy for the 11 febrile diseases used in the study. The number of comorbidities of diseases with varying degrees of severity for most patients in the study also covary strongly with those found by the physicians in the field.

4.
Trop Med Infect Dis ; 7(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36548653

ABSTRACT

This systematic literature aims to identify soft computing techniques currently utilized in diagnosing tropical febrile diseases and explore the data characteristics and features used for diagnoses, algorithm accuracy, and the limitations of current studies. The goal of this study is therefore centralized around determining the extent to which soft computing techniques have positively impacted the quality of physician care and their effectiveness in tropical disease diagnosis. The study has used PRISMA guidelines to identify paper selection and inclusion/exclusion criteria. It was determined that the highest frequency of articles utilized ensemble techniques for classification, prediction, analysis, diagnosis, etc., over single machine learning techniques, followed by neural networks. The results identified dengue fever as the most studied disease, followed by malaria and tuberculosis. It was also revealed that accuracy was the most common metric utilized to evaluate the predictive capability of a classification mode. The information presented within these studies benefits frontline healthcare workers who could depend on soft computing techniques for accurate diagnoses of tropical diseases. Although our research shows an increasing interest in using machine learning techniques for diagnosing tropical diseases, there still needs to be more studies. Hence, recommendations and directions for future research are proposed.

5.
Comput Methods Programs Biomed ; 103(1): 10-27, 2011 Jul.
Article in English | MEDLINE | ID: mdl-20633949

ABSTRACT

The task of medical diagnosis is a complex one, considering the level vagueness and uncertainty management, especially when the disease has multiple symptoms. A number of researchers have utilized the fuzzy-analytic hierarchy process (fuzzy-AHP) methodology in handling imprecise data in medical diagnosis and therapy. The fuzzy logic is able to handle vagueness and unstructuredness in decision making, while the AHP has the ability to carry out pairwise comparison of decision elements in order to determine their importance in the decision process. This study attempts to do a case comparison of the fuzzy and AHP methods in the development of medical diagnosis system, which involves basic symptoms elicitation and analysis. The results of the study indicate a non-statistically significant relative superiority of the fuzzy technology over the AHP technology. Data collected from 30 malaria patients were used to diagnose using AHP and fuzzy logic independent of one another. The results were compared and found to covary strongly. It was also discovered from the results of fuzzy logic diagnosis covary a little bit more strongly to the conventional diagnosis results than that of AHP.


Subject(s)
Decision Support Systems, Clinical/instrumentation , Diagnosis, Computer-Assisted/instrumentation , Fuzzy Logic , Malaria/diagnosis , Algorithms , Decision Support Techniques , Diagnosis, Computer-Assisted/methods , Humans , Models, Psychological , Statistics as Topic
6.
Stud Health Technol Inform ; 156: 231-44, 2010.
Article in English | MEDLINE | ID: mdl-20543357

ABSTRACT

A neuro-fuzzy decision support system is proposed for the diagnosis of heart failure. The system comprises; knowledge base (database, neural networks and fuzzy logic) of both the quantitative and qualitative knowledge of the diagnosis of heart failure, neuro-fuzzy inference engine and decision support engine. The neural networks employ a multi-layers perception back propagation learning process while the fuzzy logic uses the root sum square inference procedure. The neuro-fuzzy inference engine uses a weighted average of the premise and consequent parameters with the fuzzy rules serving as the nodes and the fuzzy sets representing the weights of the nodes. The decision support engine carries out the cognitive and emotional filtering of the objective and subjective feelings of the medical practitioner. An experimental study of the decision support system was carried out using cases of some patients from three hospitals in Nigeria with the assistance of their medical personnel who collected patients' data over a period of six months. The results of the study show that the neuro-fuzzy system provides a highly reliable diagnosis, while the emotional and cognitive filters further refine the diagnosis results by taking care of the contextual elements of medical diagnosis.


Subject(s)
Decision Support Systems, Clinical , Diagnosis, Computer-Assisted , Diagnosis, Differential , Fuzzy Logic , Heart Failure/diagnosis , Humans
7.
Stud Health Technol Inform ; 137: 328-39, 2008.
Article in English | MEDLINE | ID: mdl-18560094

ABSTRACT

The application of the conventional symbolic rules found in knowledge base technology to the management of a disease suffers from its inability to evaluate the degree of severity of a symptom and by extension the degree of the illness. Fuzzy logic technology provides a simple way to arrive at a definite conclusion from vague, ambiguous, imprecise and noisy data (as found in medical data) using linguistic variables that are not necessary precise. In order to achieve this, a study of a knowledge base system for the management of diseases was undertaken. The Root Sum Square of drawing inference was employed to infer the data from the rules developed. This resulted in the establishment of some degrees of influence on the diseases. Using malaria as a case study, a system that uses Visual Basic .Net development environment was developed and the results of the computations are presented in this research.


Subject(s)
Diagnosis, Computer-Assisted/methods , Fuzzy Logic , Malaria/diagnosis , Tropical Medicine , Humans , Severity of Illness Index , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL