Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(4): e25113, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38370188

ABSTRACT

The impact of integrated nutrient management seems crucial for the sustainability of crop production as revealed by studies on long-term experiments. It provided the opportunity to monitor long-term variations in crop yields and associated factors. The impacts of various nutrient management strategies on yields and soil attributes in a rice-wheat system have been researched under a long-term experiment that has been running since 1983 at Punjab Agricultural University, Ludhiana. Further, a positive correlation has been observed between crop yields and soil properties such as soil organic carbon (SOC), nitrogen (N), phosphorus (P), potassium (K) and zinc (Zn). The negative correlation with K could be attributed to soil becoming deficient in K and necessitating the application of potassium fertilizer. The treatments receiving organic manures (green manure, farmyard manure and wheat cut straw) showed a better population of soil microorganisms in comparison to the treatments receiving chemical fertilizers, thereby proving as precursors of sustaining soil health. The best soil characteristics (water-soluble aggregates, exchangeable and non-exchangeable K, fixed and total K) after rice and wheat harvesting were found where 50 % of the recommended NPK was supplemented with farmyard manure (FYM). The build-up of trace elements particularly for Fe and Zn was also noticed. In crystalline Fe oxide bound fraction (CFeOX), Fe increased between 717.1 and 984.8 mg kg-1, while Zn increased between 2.64 and 3.08 mg kg-1. Furthermore, amorphous iron oxide (AFeOX), CFeOX, carbonate (CARB), organic matter (OM) bound and exchangeable (EXCH) Fe and Zn were higher in treatments where organic manures were supplemented with 50 and 25 % N. Farmyard manure showed an incremental trend, followed by wheat cut straw and green manure (GM). The incremental trend in soil quality was noticed with FYM followed by wheat cut straw and GM.

2.
Ecotoxicol Environ Saf ; 270: 115832, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38141336

ABSTRACT

Agricultural productivity is constantly being forced to maintain yield stability to feed the enormously growing world population. However, shrinking arable and nutrient-deprived soil and abiotic and biotic stressor (s) in different magnitudes put additional challenges to achieving global food security. Though well-defined, the concept of macro, micronutrients, and beneficial elements is from a plant nutritional perspective. Among various micronutrients, selenium (Se) is essential in small amounts for the life cycle of organisms, including crops. Selenium has the potential to improve soil health, leading to the improvement of productivity and crop quality. However, Se possesses an immense encouraging phenomenon when supplied within the threshold limit, also having wide variations. The supplementation of Se has exhibited promising outcomes in lessening biotic and abiotic stress in various crops. Besides, bulk form, nano-Se, and biogenic-Se also revealed some merits and limitations. Literature suggests that the possibilities of biogenic-Se in stress alleviation and fortifying foods are encouraging. In this article, apart from adopting a combination of a conventional extensive review of the literature and bibliometric analysis, the authors have assessed the journey of Se in the "soil to spoon" perspective in a diverse agroecosystem to highlight the research gap area. There is no doubt that the time has come to seriously consider the tag of beneficial elements associated with Se, especially in the drastic global climate change era.


Subject(s)
Selenium , Trace Elements , Micronutrients/analysis , Soil , Agriculture , Crops, Agricultural
3.
Front Microbiol ; 14: 1265265, 2023.
Article in English | MEDLINE | ID: mdl-38370576

ABSTRACT

Introduction: The yield of chickpea is severely hampered by infection wilt caused by several races of Fusarium oxysporum f. sp. ciceris (Foc). Methods: To understand the underlying molecular mechanisms of resistance against Foc4 Fusarium wilt, RNA sequencing-based shoot transcriptome data of two contrasting chickpea genotypes, namely KWR 108 (resistant) and GL 13001 (susceptible), were generated and analyzed. Results and Discussion: The shoot transcriptome data showed 1,103 and 1,221 significant DEGs in chickpea genotypes KWR 108 and GL 13001, respectively. Among these, 495 and 608 genes were significantly down and up-regulated in genotypes KWR 108, and 427 and 794 genes were significantly down and up-regulated in genotype GL 13001. The gene ontology (GO) analysis of significant DEGs was performed and the GO of the top 50 DEGs in two contrasting chickpea genotypes showed the highest cellular components as membrane and nucleus, and molecular functions including nucleotide binding, metal ion binding, transferase, kinase, and oxidoreductase activity involved in biological processes such as phosphorylation, oxidation-reduction, cell redox homeostasis process, and DNA repair. Compared to the susceptible genotype which showed significant up-regulation of genes involved in processes like DNA repair, the significantly up-regulated DEGs of the resistant genotypes were involved in processes like energy metabolism and environmental adaptation, particularly host-pathogen interaction. This indicates an efficient utilization of environmental adaptation pathways, energy homeostasis, and stable DNA molecules as the strategy to cope with Fusarium wilt infection in chickpea. The findings of the study will be useful in targeting the genes in designing gene-based markers for association mapping with the traits of interest in chickpea under Fusarium wilt which could be efficiently utilized in marker-assisted breeding of chickpea, particularly against Foc4 Fusarium wilt.

SELECTION OF CITATIONS
SEARCH DETAIL
...