Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cortex ; 171: 287-307, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061210

ABSTRACT

The spectral formant structure and periodicity pitch are the major features that determine the identity of vowels and the characteristics of the speaker. However, very little is known about how the processing of these features in the auditory cortex changes during development. To address this question, we independently manipulated the periodicity and formant structure of vowels while measuring auditory cortex responses using magnetoencephalography (MEG) in children aged 7-12 years and adults. We analyzed the sustained negative shift of source current associated with these vowel properties, which was present in the auditory cortex in both age groups despite differences in the transient components of the auditory response. In adults, the sustained activation associated with formant structure was lateralized to the left hemisphere early in the auditory processing stream requiring neither attention nor semantic mapping. This lateralization was not yet established in children, in whom the right hemisphere contribution to formant processing was strong and decreased during or after puberty. In contrast to the formant structure, periodicity was associated with a greater response in the right hemisphere in both children and adults. These findings suggest that left-lateralization for the automatic processing of vowel formant structure emerges relatively late in ontogenesis and pose a serious challenge to current theories of hemispheric specialization for speech processing.


Subject(s)
Auditory Cortex , Speech Perception , Adult , Humans , Child , Auditory Cortex/physiology , Acoustic Stimulation , Auditory Perception/physiology , Magnetoencephalography , Speech/physiology , Speech Perception/physiology
2.
PLoS One ; 18(2): e0281531, 2023.
Article in English | MEDLINE | ID: mdl-36780507

ABSTRACT

Neurophysiological studies suggest that abnormal neural inhibition may explain a range of sensory processing differences in autism spectrum disorders (ASD). In particular, the impaired ability of people with ASD to visually discriminate the motion direction of small-size objects and their reduced perceptual suppression of background-like visual motion may stem from deficient surround inhibition within the primary visual cortex (V1) and/or its atypical top-down modulation by higher-tier cortical areas. In this study, we estimate the contribution of abnormal surround inhibition to the motion-processing deficit in ASD. For this purpose, we used a putative correlate of surround inhibition-suppression of the magnetoencephalographic (MEG) gamma response (GR) caused by an increase in the drift rate of a large annular high-contrast grating. The motion direction discrimination thresholds for the gratings of different angular sizes (1° and 12°) were assessed in a separate psychophysical paradigm. The MEG data were collected in 42 boys with ASD and 37 typically developing (TD) boys aged 7-15 years. Psychophysical data were available in 33 and 34 of these participants, respectively. The results showed that the GR suppression in V1 was reduced in boys with ASD, while their ability to detect the direction of motion was compromised only in the case of small stimuli. In TD boys, the GR suppression directly correlated with perceptual suppression caused by increasing stimulus size, thus suggesting the role of the top-down modulations of V1 in surround inhibition. In ASD, weaker GR suppression was associated with the poor directional sensitivity to small stimuli, but not with perceptual suppression. These results strongly suggest that a local inhibitory deficit in V1 plays an important role in the reduction of directional sensitivity in ASD and that this perceptual deficit cannot be explained exclusively by atypical top-down modulation of V1 by higher-tier cortical areas.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Motion Perception , Male , Humans , Primary Visual Cortex , Magnetoencephalography , Photic Stimulation/methods , Motion Perception/physiology
3.
PLoS One ; 17(12): e0279868, 2022.
Article in English | MEDLINE | ID: mdl-36584199

ABSTRACT

Premenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by extreme mood shifts during the luteal phase of the menstrual cycle (MC) due to abnormal sensitivity to neurosteroids and unbalanced neural excitation/inhibition (E/I) ratio. We hypothesized that in women with PMDD in the luteal phase, these factors would alter the frequency of magnetoencephalographic visual gamma oscillations, affect modulation of their power by excitatory drive, and decrease perceptual spatial suppression. Women with PMDD and control women were examined twice-during the follicular and luteal phases of their MC. We recorded visual gamma response (GR) while modulating the excitatory drive by increasing the drift rate of the high-contrast grating (static, 'slow', 'medium', and 'fast'). Contrary to our expectations, GR frequency was not affected in women with PMDD in either phase of the MC. GR power suppression, which is normally associated with a switch from the 'optimal' for GR slow drift rate to the medium drift rate, was reduced in women with PMDD and was the only GR parameter that distinguished them from control participants specifically in the luteal phase and predicted severity of their premenstrual symptoms. Over and above the atypical luteal GR suppression, in both phases of the MC women with PMDD had abnormally strong GR facilitation caused by a switch from the 'suboptimal' static to the 'optimal' slow drift rate. Perceptual spatial suppression did not differ between the groups but decreased from the follicular to the luteal phase only in PMDD women. The atypical modulation of GR power suggests that neuronal excitability in the visual cortex is constitutively elevated in PMDD and that this E/I imbalance is further exacerbated during the luteal phase. However, the unaltered GR frequency does not support the hypothesis of inhibitory neuron dysfunction in PMDD.


Subject(s)
Premenstrual Dysphoric Disorder , Premenstrual Syndrome , Visual Cortex , Female , Humans , Menstrual Cycle/physiology , Luteal Phase/physiology , Affect/physiology
4.
Mol Autism ; 13(1): 20, 2022 05 12.
Article in English | MEDLINE | ID: mdl-35550191

ABSTRACT

BACKGROUND: Altered neuronal excitation-inhibition (E-I) balance is strongly implicated in ASD. However, it is not known whether the direction and degree of changes in the E-I ratio in individuals with ASD correlates with intellectual disability often associated with this developmental disorder. The spectral slope of the aperiodic 1/f activity reflects the E-I balance at the scale of large neuronal populations and may uncover its putative alternations in individuals with ASD with and without intellectual disability. METHODS: Herein, we used magnetoencephalography (MEG) to test whether the 1/f slope would differentiate ASD children with average and below-average (< 85) IQ. MEG was recorded at rest with eyes open/closed in 49 boys with ASD aged 6-15 years with IQ ranging from 54 to 128, and in 49 age-matched typically developing (TD) boys. The cortical source activity was estimated using the beamformer approach and individual brain models. We then extracted the 1/f slope by fitting a linear function to the log-log-scale power spectra in the high-frequency range. RESULTS: The global 1/f slope averaged over all cortical sources demonstrated high rank-order stability between the two conditions. Consistent with previous research, it was steeper in the eyes-closed than in the eyes-open condition and flattened with age. Regardless of condition, children with ASD and below-average IQ had flatter slopes than either TD or ASD children with average or above-average IQ. These group differences could not be explained by differences in signal-to-noise ratio or periodic (alpha and beta) activity. LIMITATIONS: Further research is needed to find out whether the observed changes in E-I ratios are characteristic of children with below-average IQ of other diagnostic groups. CONCLUSIONS: The atypically flattened spectral slope of aperiodic activity in children with ASD and below-average IQ suggests a shift of the global E-I balance toward hyper-excitation. The spectral slope can provide an accessible noninvasive biomarker of the E-I ratio for making objective judgments about treatment effectiveness in people with ASD and comorbid intellectual disability.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Child , Cognition/physiology , Humans , Intelligence , Magnetoencephalography , Male
5.
Sci Rep ; 11(1): 12013, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34103578

ABSTRACT

Gamma oscillations are driven by local cortical excitatory (E)-inhibitory (I) loops and may help to characterize neural processing involving excitatory-inhibitory interactions. In the visual cortex reliable gamma oscillations can be recorded with magnetoencephalography (MEG) in the majority of individuals, which makes visual gamma an attractive candidate for biomarkers of brain disorders associated with E/I imbalance. Little is known, however, about if/how these oscillations reflect individual differences in neural excitability and associated sensory/perceptual phenomena. The power of visual gamma response (GR) changes nonlinearly with increasing stimulation intensity: it increases with transition from static to slowly drifting high-contrast grating and then attenuates with further increase in the drift rate. In a recent MEG study we found that the GR attenuation predicted sensitivity to sensory stimuli in everyday life in neurotypical adult men and in men with autism spectrum disorders. Here, we replicated these results in neurotypical female participants. The GR enhancement with transition from static to slowly drifting grating did not correlate significantly with the sensory sensitivity measures. These findings suggest that weak velocity-related attenuation of the GR is a reliable neural concomitant of visual hypersensitivity and that the degree of GR attenuation may provide useful information about E/I balance in the visual cortex.


Subject(s)
Autism Spectrum Disorder/physiopathology , Magnetoencephalography/methods , Oscillometry/methods , Visual Cortex/physiopathology , Adolescent , Adult , Brain Mapping , Female , Gamma Rhythm/physiology , Humans , Life Style , Magnetic Resonance Imaging/methods , Male , Motion Perception/physiology , Photic Stimulation/methods , Sex Factors , Visual Perception/physiology , Young Adult
6.
Neuroimage ; 213: 116753, 2020 06.
Article in English | MEDLINE | ID: mdl-32194278

ABSTRACT

Spatial suppression (SS) is a visual perceptual phenomenon that is manifest in a reduction of directional sensitivity for drifting high-contrast gratings whose size exceeds the center of the visual field. Gratings moving at faster velocities induce stronger SS. The neural processes that give rise to such size- and velocity-dependent reductions in directional sensitivity are currently unknown, and the role of surround inhibition is unclear. In magnetoencephalogram (MEG), large high-contrast drifting gratings induce a strong gamma response (GR), which also attenuates with an increase in the gratings' velocity. It has been suggested that the slope of this GR attenuation is mediated by inhibitory interactions in the primary visual cortex. Herein, we investigate whether SS is related to this inhibitory-based MEG measure. We evaluated SS and GR in two independent samples of participants: school-age boys and adult women. The slope of GR attenuation predicted inter-individual differences in SS in both samples. Test-retest reliability of the neuro-behavioral correlation was assessed in the adults, and was high between two sessions separated by several days or weeks. Neither frequencies nor absolute amplitudes of the GRs correlated with SS, which highlights the functional relevance of velocity-related changes in GR magnitude caused by augmentation of incoming input. Our findings provide evidence that links the psychophysical phenomenon of SS to inhibitory-based neural responses in the human primary visual cortex. This supports the role of inhibitory interactions as an important underlying mechanism for spatial suppression.


Subject(s)
Gamma Rhythm/physiology , Motion Perception/physiology , Neural Inhibition/physiology , Visual Cortex/physiology , Adolescent , Adult , Child , Female , Humans , Magnetoencephalography/methods , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL