Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(4): e0301345, 2024.
Article in English | MEDLINE | ID: mdl-38687761

ABSTRACT

Community-based conservation has been increasingly recognized as critical to achieve both conservation and socio-economic development goals worldwide. However, the long-term sustainability of community-based conservation programs is dependent on a broadly shared perception among community members that management actions are achieving their stated goals. Thus, understanding the underlying factors driving differences in perceptions of management effectiveness can help managers prioritize the processes and outcomes most valued by resource users and thereby promote sustained support for conservation efforts. Here, we utilize large-scale interview survey data and machine learning to identify the factors most strongly associated with differences in perceived management effectiveness between resource users engaged in marine community-based conservation programs in Kenya and Tanzania. Perceptions of management effectiveness were generally favorable in both countries, and the most important predictors of positive perceptions were associated with community and individual empowerment in resource management and use, but within disparate focal domains. Improved perceptions of management effectiveness in Kenya were closely related to increases in women's empowerment in community-based conservation programs, while inclusionary and transparent governance structures were the most important factors driving improved perceptions in Tanzania. Additionally, the strongest predictors of differences between individuals in both countries often interacted synergistically to produce even higher rates of perceived effectiveness. These findings can help future initiatives in the region tailor management to match community-level priorities and emphasize the need for community-based conservation programs to understand local context to ensure that metrics of "success" are aligned with the needs and desires of local resource users.


Subject(s)
Conservation of Natural Resources , Empowerment , Tanzania , Kenya , Humans , Conservation of Natural Resources/methods , Female , Male , Adult , Perception , Middle Aged , Community Participation , Surveys and Questionnaires
2.
Nat Ecol Evol ; 8(4): 614-621, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38332025

ABSTRACT

The Kunming-Montreal Global Biodiversity Framework (GBF) of the UN Convention on Biological Diversity set the agenda for global aspirations and action to reverse biodiversity loss. The GBF includes an explicit goal for maintaining and restoring biodiversity, encompassing ecosystems, species and genetic diversity (goal A), targets for ecosystem protection and restoration and headline indicators to track progress and guide action1. One of the headline indicators is the Red List of Ecosystems2, the global standard for ecosystem risk assessment. The Red List of Ecosystems provides a systematic framework for collating, analysing and synthesizing data on ecosystems, including their distribution, integrity and risk of collapse3. Here, we examine how it can contribute to implementing the GBF, as well as monitoring progress. We find that the Red List of Ecosystems provides common theory and practical data, while fostering collaboration, cross-sector cooperation and knowledge sharing, with important roles in 16 of the 23 targets. In particular, ecosystem maps, descriptions and risk categories are key to spatial planning for halting loss, restoration and protection (targets 1, 2 and 3). The Red List of Ecosystems is therefore well-placed to aid Parties to the GBF as they assess, plan and act to achieve the targets and goals. We outline future work to further strengthen this potential and improve biodiversity outcomes, including expanding spatial coverage of Red List of Ecosystems assessments and partnerships between practitioners, policy-makers and scientists.


Subject(s)
Conservation of Natural Resources , Ecosystem , Biodiversity , Risk Assessment
3.
Conserv Biol ; : e14169, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37650432

ABSTRACT

Protected and conserved areas (PCAs) are key ecosystem management tools for conserving biodiversity and sustaining ecosystem services and social cobenefits. As countries adopt a 30% target for protection of land and sea under the Global Biodiversity Framework of the United Nations Convention on Biological Diversity, a critical question emerging is, which 30%? A risk-based answer to this question is that the 30% that returns the greatest reductions in risks of species extinction and ecosystem collapse should be protected. The International Union for Conservation of Nature (IUCN) Red List protocols provide practical methods for assessing these risks. All species, including humans, depend on the integrity of ecosystems for their well-being and survival. Africa is strategically important for ecosystem management due to convergence of high ecosystem diversity, intense pressures, and high levels of human dependency on nature. We reviewed the outcomes (e.g., applications of ecosystem red-list assessments to protected-area design, conservation planning, and management) of a symposium at the inaugural African Protected Areas Congress convened to discuss roles of the IUCN Red List of Ecosystems in the design and management of PCAs. Recent progress was made in ecosystem assessment, with 920 ecosystem types assessed against the IUCN Red List criteria across 21 countries. Although these ecosystems spanned a diversity of environments across the continent, the greatest thematic gaps were for freshwater, marine, and subterranean realms, and large geographic gaps existed in North Africa and parts of West and East Africa. Assessment projects were implemented by a diverse community of government agencies, nongovernmental organizations, and researchers. The assessments have influenced policy and management by informing extensions to and management of formal protected area networks supporting decision-making for sustainable development, and informing ecosystem conservation and threat abatement within boundaries of PCAs and in surrounding landscapes and seascapes. We recommend further integration of risk assessments in environmental policy and enhanced investment in ecosystem red-list assessment to fill current gaps.


Contribuciones de la Lista Roja de Ecosistemas de la UICN al diseño y manejo basados en riesgos de las áreas conservadas y protegidas en África Resumen Las áreas protegidas y conservadas (APC) son herramientas clave del manejo de ecosistemas para conservar la biodiversidad y mantener los servicios ambientales y los cobeneficios sociales. Conforme los países adoptan un objetivo de 30% para la protección del suelo y el mar bajo el Marco Mundial de Biodiversidad de la Convención sobre la Diversidad Biológica de las Naciones Unidas, surge una pregunta crítica: ¿cuál 30%? Una respuesta basada en riesgos a esta pregunta es que se debe proteger el 30% que rinda la mayor reducción del riesgo de extinción de especies y del colapso del ecosistema. Los protocolos de la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN) proporcionan métodos prácticos para evaluar estos riesgos. Todas las especies, incluidos los humanos, dependen de la integridad de los ecosistemas para su bienestar y supervivencia. África tiene una importancia estratégica para el manejo de ecosistemas debido a la convergencia de una gran diversidad de ecosistemas, presiones intensas y un nivel elevado de dependencia del humano hacia la naturaleza. Revisamos los resultados (p. ej.: aplicaciones de las valoraciones de las listas rojas de ecosistemas al diseño de áreas protegidas, planeación de la conservación y manejo) de un simposio en el primer Congreso de Áreas Protegidas Africanas convocado para discutir el papel de la Lista Roja de Ecosistemas de la UICN en el diseño y manejo de las APC. Existen avances recientes en la evaluación de los ecosistemas, con 920 tipos de ecosistemas evaluados bajo los criterios de la Lista Roja de la UICN en 21 países. Mientras estos ecosistemas comprenden una diversidad de ambientes en todo el continente, los principales vacíos temáticos los encontramos para los dominios subterráneos, de agua dulce y marina, además de que existe un gran vacío geográfico en el norte de África y en partes del este y oeste africano. Los proyectos de evaluación fueron implementados por una comunidad diversa de agencias gubernamentales, organizaciones no gubernamentales e investigadores. La influencia de las evaluaciones sobre las políticas y el manejo se da con la información que proveen a las extensiones y el manejo de las redes de áreas protegidas formales, el apoyo para la toma de decisiones de desarrollo sustentable y la guía para la conservación de ecosistemas y el abatimiento de amenazas dentro de los límites de las APC y en los paisajes terrestres y marinos adyacentes. Recomendamos una mayor integración de las evaluaciones de riesgo dentro de las políticas ambientales y más inversión para las evaluaciones de lista roja de los ecosistemas cubrir los vacíos existentes.

4.
Nature ; 619(7968): 102-111, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37258676

ABSTRACT

The stability and resilience of the Earth system and human well-being are inseparably linked1-3, yet their interdependencies are generally under-recognized; consequently, they are often treated independently4,5. Here, we use modelling and literature assessment to quantify safe and just Earth system boundaries (ESBs) for climate, the biosphere, water and nutrient cycles, and aerosols at global and subglobal scales. We propose ESBs for maintaining the resilience and stability of the Earth system (safe ESBs) and minimizing exposure to significant harm to humans from Earth system change (a necessary but not sufficient condition for justice)4. The stricter of the safe or just boundaries sets the integrated safe and just ESB. Our findings show that justice considerations constrain the integrated ESBs more than safety considerations for climate and atmospheric aerosol loading. Seven of eight globally quantified safe and just ESBs and at least two regional safe and just ESBs in over half of global land area are already exceeded. We propose that our assessment provides a quantitative foundation for safeguarding the global commons for all people now and into the future.


Subject(s)
Climate Change , Earth, Planet , Environmental Justice , Internationality , Safety , Humans , Aerosols/metabolism , Climate , Water/metabolism , Nutrients/metabolism , Safety/legislation & jurisprudence , Safety/standards
5.
Adv Mar Biol ; 93: 23-115, 2022.
Article in English | MEDLINE | ID: mdl-36435592

ABSTRACT

We review the current knowledge of the biodiversity of the ocean as well as the levels of decline and threat for species and habitats. The lack of understanding of the distribution of life in the ocean is identified as a significant barrier to restoring its biodiversity and health. We explore why the science of taxonomy has failed to deliver knowledge of what species are present in the ocean, how they are distributed and how they are responding to global and regional to local anthropogenic pressures. This failure prevents nations from meeting their international commitments to conserve marine biodiversity with the results that investment in taxonomy has declined in many countries. We explore a range of new technologies and approaches for discovery of marine species and their detection and monitoring. These include: imaging methods, molecular approaches, active and passive acoustics, the use of interconnected databases and citizen science. Whilst no one method is suitable for discovering or detecting all groups of organisms many are complementary and have been combined to give a more complete picture of biodiversity in marine ecosystems. We conclude that integrated approaches represent the best way forwards for accelerating species discovery, description and biodiversity assessment. Examples of integrated taxonomic approaches are identified from terrestrial ecosystems. Such integrated taxonomic approaches require the adoption of cybertaxonomy approaches and will be boosted by new autonomous sampling platforms and development of machine-speed exchange of digital information between databases.


Subject(s)
Biodiversity , Ecosystem
6.
Nat Ecol Evol ; 6(9): 1262-1270, 2022 09.
Article in English | MEDLINE | ID: mdl-35798839

ABSTRACT

The biodiversity of marine and coastal habitats is experiencing unprecedented change. While there are well-known drivers of these changes, such as overexploitation, climate change and pollution, there are also relatively unknown emerging issues that are poorly understood or recognized that have potentially positive or negative impacts on marine and coastal ecosystems. In this inaugural Marine and Coastal Horizon Scan, we brought together 30 scientists, policymakers and practitioners with transdisciplinary expertise in marine and coastal systems to identify new issues that are likely to have a significant impact on the functioning and conservation of marine and coastal biodiversity over the next 5-10 years. Based on a modified Delphi voting process, the final 15 issues presented were distilled from a list of 75 submitted by participants at the start of the process. These issues are grouped into three categories: ecosystem impacts, for example the impact of wildfires and the effect of poleward migration on equatorial biodiversity; resource exploitation, including an increase in the trade of fish swim bladders and increased exploitation of marine collagens; and new technologies, such as soft robotics and new biodegradable products. Our early identification of these issues and their potential impacts on marine and coastal biodiversity will support scientists, conservationists, resource managers and policymakers to address the challenges facing marine ecosystems.


Subject(s)
Biodiversity , Ecosystem , Animals , Climate Change , Humans
9.
Nat Ecol Evol ; 5(10): 1338-1349, 2021 10.
Article in English | MEDLINE | ID: mdl-34400825

ABSTRACT

Despite substantial conservation efforts, the loss of ecosystems continues globally, along with related declines in species and nature's contributions to people. An effective ecosystem goal, supported by clear milestones, targets and indicators, is urgently needed for the post-2020 global biodiversity framework and beyond to support biodiversity conservation, the UN Sustainable Development Goals and efforts to abate climate change. Here, we describe the scientific foundations for an ecosystem goal and milestones, founded on a theory of change, and review available indicators to measure progress. An ecosystem goal should include three core components: area, integrity and risk of collapse. Targets-the actions that are necessary for the goals to be met-should address the pathways to ecosystem loss and recovery, including safeguarding remnants of threatened ecosystems, restoring their area and integrity to reduce risk of collapse and retaining intact areas. Multiple indicators are needed to capture the different dimensions of ecosystem area, integrity and risk of collapse across all ecosystem types, and should be selected for their fitness for purpose and relevance to goal components. Science-based goals, supported by well-formulated action targets and fit-for-purpose indicators, will provide the best foundation for reversing biodiversity loss and sustaining human well-being.


Subject(s)
Ecosystem , Goals , Biodiversity , Climate Change , Conservation of Natural Resources , Humans
11.
Sci Rep ; 10(1): 22133, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335160

ABSTRACT

Coral reefs around the world are undergoing severe decline in the past few decades. Mass coral mortalities have predominantly been reported to be caused by coral bleaching or disease outbreaks. Temporary hypoxic conditions caused by algal blooms can trigger mass coral mortalities though are reported rarely. In this study in Gulf of Mannar (GoM), southeast India, we report a significant coral mortality caused by a bloom of the ciguatoxic dinoflagellate Noctiluca scintillans during September-October 2019. Dissolved oxygen levels declined below 2 mg l-1 during the bloom causing temporary hypoxia and mortality (up to 71.23%) in the fast growing coral genera Acropora, Montipora and Pocillopora. Due to global climate change, more frequent and larger algal blooms are likely in the future. Hence, it is likely that shallow water coral reefs will be affected more frequently by episodic hypoxic conditions driven by algal blooms. More studies are, however, required to understand the mechanism of coral mortality due to algal blooms, impacts on community composition and the potential for subsequent recovery.


Subject(s)
Anthozoa , Antibiosis , Dinoflagellida/physiology , Harmful Algal Bloom , Oxygen/metabolism , Animals , Coral Reefs , Environment , Geography , India
13.
PLoS One ; 15(8): e0237397, 2020.
Article in English | MEDLINE | ID: mdl-32845883

ABSTRACT

Spatial patterns of coral reef benthic communities vary across a range of broad-scale biogeographical levels to fine-scale local habitat conditions. This study described spatial patterns of coral reef benthic communities spanning across the 536-km coast of Kenya. Thirty-eight reef sites representing different geographical zones within an array of habitats and management levels were assessed by benthic cover, coral genera and coral colony size classes. Three geographical zones were identified along the latitudinal gradient based on their benthic community composition. Hard coral dominated the three zones with highest cover in the south and Porites being the most abundant genus. Almost all 15 benthic variables differed significantly between geographical zones. The interaction of habitat factors and management levels created a localised pattern within each zone. Four habitats were identified based on their similarity in benthic community composition; 1. Deep-Exposed Patch reef in Reserve areas (DEPR), 2. Deep-Exposed Fringing reefs in Unprotected areas (DEFU), 3. Shallow Fringing and Lagoon reefs in Protected and Reserve areas (SFLPR) and 4. Shallow Patch and Channel reefs (SPC). DEPR was found in the north zone only and its benthic community was predominantly crustose coralline algae. DEFU was found in central and south zones mainly dominated by soft corals, Acropora, Montipora, juvenile corals and small colonies of adult corals. SFLPR was dominated by macroalgae and turf algae and was found in north and central zones. SPC was found across all geographical zones with a benthic community dominated by hard corals of mostly large colonies of Porites and Echinopora. The north zone exhibits habitat types that support resistance properties, the south supports recovery processes and central zone acts as an ecological corridor between zones. Identifying habitats with different roles in reef resilience is useful information for marine spatial planning and supports the process of designing effective marine protected areas.


Subject(s)
Coral Reefs , Food Chain , Spatial Analysis , Ecosystem , Kenya
15.
Science ; 366(6471)2019 12 13.
Article in English | MEDLINE | ID: mdl-31831642

ABSTRACT

The human impact on life on Earth has increased sharply since the 1970s, driven by the demands of a growing population with rising average per capita income. Nature is currently supplying more materials than ever before, but this has come at the high cost of unprecedented global declines in the extent and integrity of ecosystems, distinctness of local ecological communities, abundance and number of wild species, and the number of local domesticated varieties. Such changes reduce vital benefits that people receive from nature and threaten the quality of life of future generations. Both the benefits of an expanding economy and the costs of reducing nature's benefits are unequally distributed. The fabric of life on which we all depend-nature and its contributions to people-is unravelling rapidly. Despite the severity of the threats and lack of enough progress in tackling them to date, opportunities exist to change future trajectories through transformative action. Such action must begin immediately, however, and address the root economic, social, and technological causes of nature's deterioration.


Subject(s)
Conservation of Natural Resources , Human Activities/trends , Quality of Life , Earth, Planet , Humans , Population Growth
16.
J Environ Manage ; 233: 291-301, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30583103

ABSTRACT

Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.


Subject(s)
Anthozoa , Coral Reefs , Animals , Climate , Ecosystem
17.
PeerJ ; 6: e5305, 2018.
Article in English | MEDLINE | ID: mdl-30083452

ABSTRACT

BACKGROUND: High sea surface temperatures resulted in widespread coral bleaching and mortality in Mayotte Island (northern Mozambique channel, Indian Ocean: 12.1°S, 45.1°E) in April-June 2010. METHODS: Twenty three representative coral genera were sampled quantitatively for size class distributions during the peak of the bleaching event to measure its impact. RESULTS: Fifty two percent of coral area was impacted, comprising 19.3% pale, 10.7% bleached, 4.8% partially dead and 17.5% recently dead. Acropora, the dominant genus, was the second most susceptible to bleaching (22%, pale and bleached) and mortality (32%, partially dead and dead), only exceeded by Pocillopora (32% and 47%, respectively). The majority of genera showed intermediate responses, and the least response was shown by Acanthastrea and Leptastrea (6% pale and bleached). A linear increase in bleaching susceptibility was found from small colonies (<2.5 cm, 83% unaffected) to large ones (>80 cm, 33% unaffected), across all genera surveyed. Maximum mortality in 2010 was estimated at 32% of coral area or biomass, compared to half that (16%), by colony abundance. DISCUSSION: Mayotte reefs have displayed a high level of resilience to bleaching events in 1983, 1998 and the 2010 event reported here, and experienced a further bleaching event in 2016. However, prospects for continued resilience are uncertain as multiple threats are increasing: the rate of warming experienced (0.1 °C per decade) is some two to three times less than projected warming in coming decades, the interval between severe bleaching events has declined from 16 to 6 years, and evidence of chronic mortality from local human impacts is increasing. The study produced four recommendations for reducing bias when monitoring and assessing coral bleaching: coral colony size should be measured, unaffected colonies should be included in counts, quadrats or belt transects should be used and weighting coefficients in the calculation of indices should be used with caution.

18.
Glob Chang Biol ; 24(6): 2416-2433, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29623683

ABSTRACT

Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices.

19.
Science ; 357(6357): 1215, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-28935778
20.
Proc Biol Sci ; 283(1822)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26740615

ABSTRACT

Numerous studies have documented declines in the abundance of reef-building corals over the last several decades and in some but not all cases, phase shifts to dominance by macroalgae have occurred. These assessments, however, often ignore the remainder of the benthos and thus provide limited information on the present-day structure and function of coral reef communities. Here, using an unprecedentedly large dataset collected within the last 10 years across 56 islands spanning five archipelagos in the central Pacific, we examine how benthic reef communities differ in the presence and absence of human populations. Using islands as replicates, we examine whether benthic community structure is associated with human habitation within and among archipelagos and across latitude. While there was no evidence for coral to macroalgal phase shifts across our dataset we did find that the majority of reefs on inhabited islands were dominated by fleshy non-reef-building organisms (turf algae, fleshy macroalgae and non-calcifying invertebrates). By contrast, benthic communities from uninhabited islands were more variable but in general supported more calcifiers and active reef builders (stony corals and crustose coralline algae). Our results suggest that cumulative human impacts across the central Pacific may be causing a reduction in the abundance of reef builders resulting in island scale phase shifts to dominance by fleshy organisms.


Subject(s)
Biodiversity , Coral Reefs , Environmental Monitoring , Animals , Anthozoa/physiology , Humans , Islands , Pacific Ocean , Seaweed/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...