Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 18(11): e0293809, 2023.
Article in English | MEDLINE | ID: mdl-37988351

ABSTRACT

In Trypanosoma cruzi DNA is packaged into chromatin by octamers of histone proteins that form nucleosomes. Transcription of protein coding genes in trypanosomes is constitutive producing polycistronic units and gene expression is primarily regulated post-transcriptionally. However, chromatin organization influences DNA dependent processes. Hence, determining nucleosome position is of uppermost importance to understand the peculiarities found in trypanosomes. To map nucleosomes genome-wide in several organisms, digestion of chromatin with micrococcal nuclease followed by deep sequencing has been applied. Nonetheless, the special requirements for cell manipulation and the uniqueness of the chromatin organization in trypanosomes entails a customized analytical approach. In this work, we adjusted this broadly used method to the hybrid reference strain, CL Brener. Particularly, we implemented an exhaustive and thorough computational workflow to overcome the difficulties imposed by this complex genome. We tested the performance of two aligners, Bowtie2 and HISAT2, and discuss their advantages and caveats. Specifically, we highlight the relevance of using the whole genome as a reference instead of the commonly used Esmeraldo-like haplotype to avoid spurious alignments. Additionally, we show that using the whole genome refines the average nucleosome representation, but also the quality of mapping for every region represented. Moreover, we show that the average nucleosome organization around trans-splicing acceptor site described before, is not just an average since the same chromatin pattern is detected for most of the represented regions. In addition, we extended the study to a non-hybrid strain applying the experimental and analytical approach to Sylvio-X10 strain. Furthermore, we provide a source code for the construction of 2D plots and heatmaps which are easy to adapt to any T. cruzi strain.


Subject(s)
Nucleosomes , Trypanosoma , Nucleosomes/genetics , Chromatin/genetics , Histones/genetics , Trypanosoma/genetics , DNA , Micrococcal Nuclease/metabolism
2.
Epigenomes ; 6(3)2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36135316

ABSTRACT

Subtelomeres (ST) are chromosome regions that separate telomeres from euchromatin and play relevant roles in various biological processes of the cell. While their functions are conserved, ST structure and genetic compositions are unique to each species. This study aims to identify and characterize the subtelomeric regions of the 13 Toxoplasma gondii chromosomes of the Me49 strain. Here, STs were defined at chromosome ends based on poor gene density. The length of STs ranges from 8.1 to 232.4 kbp, with a gene density of 0.049 genes/kbp, lower than the Me49 genome (0.15 kbp). Chromatin organization showed that H3K9me3, H2A.X, and H3.3 are highly enriched near telomeres and the 5' end of silenced genes, decaying in intensity towards euchromatin. H3K4me3 and H2A.Z/H2B.Z are shown to be enriched in the 5' end of the ST genes. Satellite DNA was detected in almost all STs, mainly the sat350 family and a novel satellite named sat240. Beyond the STs, only short dispersed fragments of sat240 and sat350 were found. Within STs, there were 12 functional annotated genes, 59 with unknown functions (Hypothetical proteins), 15 from multigene FamB, and 13 from multigene family FamC. Some genes presented low interstrain synteny associated with the presence of satellite DNA. Orthologues of FamB and FamC were also detected in Neospora caninum and Hammondia hammondi. A re-analysis of previous transcriptomic data indicated that ST gene expression is strongly linked to the adaptation to different situations such as extracellular passage (evolve and resequencing study) and changes in metabolism (lack of acetyl-CoA cofactor). In conclusion, the ST region of the T. gondii chromosomes was defined, the STs genes were determined, and it was possible to associate them with high interstrain plasticity and a role in the adaptability of T. gondii to environmental changes.

3.
Epigenetics Chromatin ; 14(1): 5, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33430969

ABSTRACT

BACKGROUND: The vast majority of methods available to characterize genome-wide chromatin structure exploit differences in DNA accessibility to nucleases or chemical crosslinking. We developed a novel method to gauge genome-wide accessibility of histone protein surfaces within nucleosomes by assessing reactivity of engineered cysteine residues with a thiol-specific reagent, biotin-maleimide (BM). RESULTS: Yeast nuclei were obtained from cells expressing the histone mutant H2B S116C, in which a cysteine resides near the center of the external flat protein surface of the nucleosome. BM modification revealed that nucleosomes are generally equivalently accessible throughout the S. cerevisiae genome, including heterochromatic regions, suggesting limited, higher-order chromatin structures in which this surface is obstructed by tight nucleosome packing. However, we find that nucleosomes within 500 bp of transcription start sites exhibit the greatest range of accessibility, which correlates with the density of chromatin remodelers. Interestingly, accessibility is not well correlated with RNA polymerase density and thus the level of gene expression. We also investigated the accessibility of cysteine mutations designed to detect exposure of histone surfaces internal to the nucleosome thought to be accessible in actively transcribed genes: H3 102, is at the H2A-H2B dimer/H3-H4 tetramer interface, and H3 A110C, resides at the H3-H3 interface. However, in contrast to the external surface site, we find that neither of these internal sites were found to be appreciably exposed. CONCLUSIONS: Overall, our finding that nucleosomes surfaces within S. cerevisiae chromatin are equivalently accessible genome-wide is consistent with a globally uncompacted chromatin structure lacking substantial higher-order organization. However, we find modest differences in accessibility that correlate with chromatin remodelers but not transcription, suggesting chromatin poised for transcription is more accessible than actively transcribed or intergenic regions. In contrast, we find that two internal sites remain inaccessible, suggesting that such non-canonical nucleosome species generated during transcription are rapidly and efficiently converted to canonical nucleosome structure and thus not widely present in native chromatin.


Subject(s)
Histones , Nucleosomes , Chromatin/genetics , Chromatin Assembly and Disassembly , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
4.
Biology (Basel) ; 9(8)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722483

ABSTRACT

Cellular DNA is packaged into chromatin, which is composed of regularly-spaced nucleosomes with occasional gaps corresponding to active regulatory elements, such as promoters and enhancers, called nucleosome-depleted regions (NDRs). This chromatin organisation is primarily determined by the activities of a set of ATP-dependent remodeling enzymes that are capable of moving nucleosomes along DNA, or of evicting nucleosomes altogether. In yeast, the nucleosome-spacing enzymes are ISW1 (Imitation SWitch protein 1), Chromodomain-Helicase-DNA-binding (CHD)1, ISW2 (Imitation SWitch protein 2) and INOsitol-requiring 80 (INO80); the nucleosome eviction enzymes are the SWItching/Sucrose Non-Fermenting (SWI/SNF) family, the Remodeling the Structure of Chromatin (RSC) complexes and INO80. We discuss the contributions of each set of enzymes to chromatin organisation. ISW1 and CHD1 are the major spacing enzymes; loss of both enzymes results in major chromatin disruption, partly due to the appearance of close-packed di-nucleosomes. ISW1 and CHD1 compete to set nucleosome spacing on most genes. ISW1 is dominant, setting wild type spacing, whereas CHD1 sets short spacing and may dominate on highly-transcribed genes. We propose that the competing remodelers regulate spacing, which in turn controls the binding of linker histone (H1) and therefore the degree of chromatin folding. Thus, genes with long spacing bind more H1, resulting in increased chromatin compaction. RSC, SWI/SNF and INO80 are involved in NDR formation, either directly by nucleosome eviction or repositioning, or indirectly by affecting the size of the complex that resides in the NDR. The nature of this complex is controversial: some suggest that it is a RSC-bound "fragile nucleosome", whereas we propose that it is a non-histone transcription complex. In either case, this complex appears to serve as a barrier to nucleosome formation, resulting in the formation of phased nucleosomal arrays on both sides.

5.
G3 (Bethesda) ; 10(6): 2057-2068, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32295767

ABSTRACT

The evolutionarily conserved centromeric histone H3 variant (Cse4 in budding yeast, CENP-A in humans) is essential for faithful chromosome segregation. Mislocalization of CENP-A to non-centromeric chromatin contributes to chromosomal instability (CIN) in yeast, fly, and human cells and CENP-A is highly expressed and mislocalized in cancers. Defining mechanisms that prevent mislocalization of CENP-A is an area of active investigation. Ubiquitin-mediated proteolysis of overexpressed Cse4 (GALCSE4) by E3 ubiquitin ligases such as Psh1 prevents mislocalization of Cse4, and psh1Δ strains display synthetic dosage lethality (SDL) with GALCSE4 We previously performed a genome-wide screen and identified five alleles of CDC7 and DBF4 that encode the Dbf4-dependent kinase (DDK) complex, which regulates DNA replication initiation, among the top twelve hits that displayed SDL with GALCSE4 We determined that cdc7-7 strains exhibit defects in ubiquitin-mediated proteolysis of Cse4 and show mislocalization of Cse4 Mutation of MCM5 (mcm5-bob1) bypasses the requirement of Cdc7 for replication initiation and rescues replication defects in a cdc7-7 strain. We determined that mcm5-bob1 does not rescue the SDL and defects in proteolysis of GALCSE4 in a cdc7-7 strain, suggesting a DNA replication-independent role for Cdc7 in Cse4 proteolysis. The SDL phenotype, defects in ubiquitin-mediated proteolysis, and the mislocalization pattern of Cse4 in a cdc7-7psh1Δ strain were similar to that of cdc7-7 and psh1Δ strains, suggesting that Cdc7 regulates Cse4 in a pathway that overlaps with Psh1 Our results define a DNA replication initiation-independent role of DDK as a regulator of Psh1-mediated proteolysis of Cse4 to prevent mislocalization of Cse4.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Cell Cycle Proteins/genetics , Centromere/metabolism , Centromere Protein A , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Humans , Protein Serine-Threonine Kinases , Proteolysis , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ubiquitination
6.
PLoS Genet ; 16(2): e1008597, 2020 02.
Article in English | MEDLINE | ID: mdl-32032354

ABSTRACT

Restricting the localization of the histone H3 variant CENP-A (Cse4 in yeast, CID in flies) to centromeres is essential for faithful chromosome segregation. Mislocalization of CENP-A leads to chromosomal instability (CIN) in yeast, fly and human cells. Overexpression and mislocalization of CENP-A has been observed in many cancers and this correlates with increased invasiveness and poor prognosis. Yet genes that regulate CENP-A levels and localization under physiological conditions have not been defined. In this study we used a genome-wide genetic screen to identify essential genes required for Cse4 homeostasis to prevent its mislocalization for chromosomal stability. We show that two Skp, Cullin, F-box (SCF) ubiquitin ligases with the evolutionarily conserved F-box proteins Met30 and Cdc4 interact and cooperatively regulate proteolysis of endogenous Cse4 and prevent its mislocalization for faithful chromosome segregation under physiological conditions. The interaction of Met30 with Cdc4 is independent of the D domain, which is essential for their homodimerization and ubiquitination of other substrates. The requirement for both Cdc4 and Met30 for ubiquitination is specifc for Cse4; and a common substrate for Cdc4 and Met30 has not previously been described. Met30 is necessary for the interaction between Cdc4 and Cse4, and defects in this interaction lead to stabilization and mislocalization of Cse4, which in turn contributes to CIN. We provide the first direct link between Cse4 mislocalization to defects in kinetochore structure and show that SCF-mediated proteolysis of Cse4 is a major mechanism that prevents stable maintenance of Cse4 at non-centromeric regions, thus ensuring faithful chromosome segregation. In summary, we have identified essential pathways that regulate cellular levels of endogenous Cse4 and shown that proteolysis of Cse4 by SCF-Met30/Cdc4 prevents mislocalization and CIN in unperturbed cells.


Subject(s)
Cell Cycle Proteins/metabolism , Chromosomal Instability , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , F-Box Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Ubiquitin-Protein Ligase Complexes/metabolism , Ubiquitin-Protein Ligases/metabolism , Centromere/metabolism , Chromosome Segregation , Protein Domains , Proteolysis , Ubiquitination
7.
Genome Res ; 29(12): 1985-1995, 2019 12.
Article in English | MEDLINE | ID: mdl-31511305

ABSTRACT

DNA accessibility is thought to be of major importance in regulating gene expression. We test this hypothesis using a restriction enzyme as a probe of chromatin structure and as a proxy for transcription factors. We measured the digestion rate and the fraction of accessible DNA at almost all genomic AluI sites in budding yeast and mouse liver nuclei. Hepatocyte DNA is more accessible than yeast DNA, consistent with longer linkers between nucleosomes, suggesting that nucleosome spacing is a major determinant of accessibility. DNA accessibility varies from cell to cell, such that essentially no sites are accessible or inaccessible in every cell. AluI sites in inactive mouse promoters are accessible in some cells, implying that transcription factors could bind without activating the gene. Euchromatin and heterochromatin have very similar accessibilities, suggesting that transcription factors can penetrate heterochromatin. Thus, DNA accessibility is not likely to be the primary determinant of gene regulation.


Subject(s)
Cell Nucleus , Chromatin , DNA, Fungal , Gene Expression Regulation, Fungal , Hepatocytes/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , DNA, Fungal/genetics , DNA, Fungal/metabolism , Heterochromatin/genetics , Heterochromatin/metabolism , Mice , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
8.
Mol Cell Biol ; 39(8)2019 04 15.
Article in English | MEDLINE | ID: mdl-30718362

ABSTRACT

The genome is packaged and organized in an ordered, nonrandom manner, and specific chromatin segments contact nuclear substructures to mediate this organization. tRNA genes (tDNAs) are binding sites for transcription factors and architectural proteins and are thought to play an important role in the organization of the genome. In this study, we investigate the roles of tDNAs in genomic organization and chromosome function by editing a chromosome so that it lacked any tDNAs. Surprisingly our analyses of this tDNA-less chromosome show that loss of tDNAs does not grossly affect chromatin architecture or chromosome tethering and mobility. However, loss of tDNAs affects local nucleosome positioning and the binding of SMC proteins at these loci. The absence of tDNAs also leads to changes in centromere clustering and a reduction in the frequency of long-range HML-HMR heterochromatin clustering with concomitant effects on gene silencing. We propose that the tDNAs primarily affect local chromatin structure, which results in effects on long-range chromosome architecture.


Subject(s)
Chromatin/metabolism , Chromatin/ultrastructure , RNA, Transfer/genetics , Binding Sites , Cell Nucleus/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin Assembly and Disassembly , Chromosomes/genetics , Chromosomes/metabolism , Heterochromatin/metabolism , Heterochromatin/ultrastructure , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors, TFIII/metabolism
9.
Genome Res ; 29(3): 407-417, 2019 03.
Article in English | MEDLINE | ID: mdl-30683752

ABSTRACT

Most yeast genes have a nucleosome-depleted region (NDR) at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. We have examined the interplay between RSC (a conserved essential SWI/SNF-type complex that determines NDR size) and the ISW1, CHD1, and ISW2 nucleosome spacing enzymes in chromatin organization and transcription, using isogenic strains lacking all combinations of these enzymes. The contributions of these remodelers to chromatin organization are largely combinatorial, distinct, and nonredundant, supporting a model in which the +1 nucleosome is positioned by RSC and then used as a reference nucleosome by the spacing enzymes. Defective chromatin organization correlates with altered RNA polymerase II (Pol II) distribution. RSC-depleted cells exhibit low levels of elongating Pol II and high levels of terminating Pol II, consistent with defects in both termination and initiation, suggesting that RSC facilitates both. Cells lacking both ISW1 and CHD1 show the opposite Pol II distribution, suggesting elongation and termination defects. These cells have extremely disrupted chromatin, with high levels of closely packed dinucleosomes involving the second (+2) nucleosome. We propose that ISW1 and CHD1 facilitate Pol II elongation by separating closely packed nucleosomes.


Subject(s)
Chromatin Assembly and Disassembly , DNA-Binding Proteins/genetics , RNA Polymerase II/genetics , Saccharomyces cerevisiae Proteins/genetics , Transcription Elongation, Genetic , Transcription Factors/genetics , Transcription Termination, Genetic , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Fungal , Nucleosomes/genetics , Nucleosomes/metabolism , RNA Polymerase II/metabolism , Saccharomyces cerevisiae , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/metabolism
10.
Mol Cell ; 70(2): 297-311.e4, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29628310

ABSTRACT

Gcn4 is a yeast transcriptional activator induced by amino acid starvation. ChIP-seq analysis revealed 546 genomic sites occupied by Gcn4 in starved cells, representing ∼30% of Gcn4-binding motifs. Surprisingly, only ∼40% of the bound sites are in promoters, of which only ∼60% activate transcription, indicating extensive negative control over Gcn4 function. Most of the remaining ∼300 Gcn4-bound sites are within coding sequences (CDSs), with ∼75 representing the only bound sites near Gcn4-induced genes. Many such unconventional sites map between divergent antisense and sub-genic sense transcripts induced within CDSs adjacent to induced TBP peaks, consistent with Gcn4 activation of cryptic bidirectional internal promoters. Mutational analysis confirms that Gcn4 sites within CDSs can activate sub-genic and full-length transcripts from the same or adjacent genes, showing that functional Gcn4 binding is not confined to promoters. Our results show that internal promoters can be regulated by an activator that functions at conventional 5'-positioned promoters.


Subject(s)
5' Flanking Region , Basic-Leucine Zipper Transcription Factors/metabolism , DNA, Fungal/metabolism , Gene Expression Regulation, Fungal , Nucleosomes/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Transcriptional Activation , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , DNA, Fungal/genetics , Histones/genetics , Histones/metabolism , Mutation , Nucleosomes/genetics , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
11.
Mol Cell ; 65(3): 565-577.e3, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28157509

ABSTRACT

Micrococcal nuclease (MNase) is commonly used to map nucleosomes genome-wide, but nucleosome maps are affected by the degree of digestion. It has been proposed that many yeast promoters are not nucleosome-free but instead occupied by easily digested, unstable, "fragile" nucleosomes. We analyzed the histone content of all MNase-sensitive complexes by MNase-ChIP-seq and sonication-ChIP-seq. We find that yeast promoters are predominantly bound by non-histone protein complexes, with little evidence for fragile nucleosomes. We do detect MNase-sensitive nucleosomes elsewhere in the genome, including at transcription termination sites. However, they have high A/T content, suggesting that MNase sensitivity does not indicate instability, but rather the preference of MNase for A/T-rich DNA, such that A/T-rich nucleosomes are digested faster than G/C-rich nucleosomes. We confirm our observations by analyzing ChIP-exo, chemical mapping, and ATAC-seq data from other laboratories. Thus, histone ChIP-seq experiments are essential to distinguish nucleosomes from other DNA-binding proteins that protect against MNase.


Subject(s)
Micrococcal Nuclease/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Base Composition , Nucleosomes , Promoter Regions, Genetic
12.
Fungal Biol ; 120(12): 1493-1508, 2016 12.
Article in English | MEDLINE | ID: mdl-27890086

ABSTRACT

Protein kinase A (PKA) activity is involved in dimorphism of the basal fungal lineage Mucor. From the recently sequenced genome of Mucor circinelloides we could predict ten catalytic subunits of PKA. From sequence alignment and structural prediction we conclude that the catalytic core of the isoforms is conserved, and the difference between them resides in their amino termini. This high number of isoforms is maintained in the subdivision Mucoromycotina. Each paralogue, when compared to the ones form other fungi is more homologous to one of its orthologs than to its paralogs. All of these fungal isoforms cannot be included in the class I or II in which fungal protein kinases have been classified. mRNA levels for each isoform were measured during aerobic and anaerobic growth. The expression of each isoform is differential and associated to a particular growth stage. We reanalyzed the sequence of PKAC (GI 20218944), the only cloned sequence available until now for a catalytic subunit of M. circinelloides. PKAC cannot be classified as a PKA because of its difference in the conserved C-tail; it shares with PKB a conserved C2 domain in the N-terminus. No catalytic activity could be measured for this protein nor predicted bioinformatically. It can thus be classified as a pseudokinase. Its importance can not be underestimated since it is expressed at the mRNA level in different stages of growth, and its deletion is lethal.


Subject(s)
Catalytic Domain/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Mucor/enzymology , Aerobiosis , Anaerobiosis , Gene Expression Profiling , Mucor/genetics , Mucor/growth & development , Protein Isoforms/genetics , RNA, Messenger/analysis , Sequence Homology
13.
Nucleus ; 7(4): 382-7, 2016 Jul 03.
Article in English | MEDLINE | ID: mdl-27645053

ABSTRACT

Eukaryotic DNA is packaged into regularly spaced nucleosomes, resembling beads on a string. Each bead contains ∼147 bp wrapped around a core histone octamer. Linker histone (H1) binds to the linker DNA to drive chromatin folding. Micrococcal nuclease (MNase) digestion studies reveal 2 mono-nucleosomal intermediates: the core particle (∼147 bp) and the chromatosome (∼160 bp; a core particle with additional DNA protected by H1). We have recently developed an improved method for mapping nucleosomes, using exonuclease III to remove residual linker (MNase-Exo-seq). (1) We discovered 2 new intermediate particles corresponding to core particles with ∼7 bp of linker protruding from one side (∼154 bp) or both sides (∼161 bp), which are formed in the absence of H1. We propose that these "proto-chromatosomes" are stabilized by core histone-DNA contacts in the linker, ∼7 bp from the nucleosome boundaries. These contacts may determine the topography of the H1 binding site.


Subject(s)
Chromatin/genetics , Chromatin/metabolism , DNA/genetics , DNA/metabolism , Histones/metabolism , Micrococcal Nuclease/metabolism , Nucleosomes/metabolism
14.
Nucleic Acids Res ; 44(10): 4625-35, 2016 06 02.
Article in English | MEDLINE | ID: mdl-26861626

ABSTRACT

Adenosine triphosphate-dependent chromatin remodeling machines play a central role in gene regulation by manipulating chromatin structure. Most genes have a nucleosome-depleted region at the promoter and an array of regularly spaced nucleosomes phased relative to the transcription start site. In vitro, the three known yeast nucleosome spacing enzymes (CHD1, ISW1 and ISW2) form arrays with different spacing. We used genome-wide nucleosome sequencing to determine whether these enzymes space nucleosomes differently in vivo We find that CHD1 and ISW1 compete to set the spacing on most genes, such that CHD1 dominates genes with shorter spacing and ISW1 dominates genes with longer spacing. In contrast, ISW2 plays a minor role, limited to transcriptionally inactive genes. Heavily transcribed genes show weak phasing and extreme spacing, either very short or very long, and are depleted of linker histone (H1). Genes with longer spacing are enriched in H1, which directs chromatin folding. We propose that CHD1 directs short spacing, resulting in eviction of H1 and chromatin unfolding, whereas ISW1 directs longer spacing, allowing H1 to bind and condense the chromatin. Thus, competition between the two remodelers to set the spacing on each gene may result in a highly dynamic chromatin structure.


Subject(s)
Adenosine Triphosphatases/metabolism , DNA-Binding Proteins/metabolism , Nucleosomes/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Chromatin Assembly and Disassembly , Genes, Fungal , Histones/metabolism , Nucleosomes/metabolism , Transcription, Genetic
15.
Nucleic Acids Res ; 44(2): 573-81, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26400169

ABSTRACT

Eukaryotic chromosomal DNA is assembled into regularly spaced nucleosomes, which play a central role in gene regulation by determining accessibility of control regions. The nucleosome contains ∼147 bp of DNA wrapped ∼1.7 times around a central core histone octamer. The linker histone, H1, binds both to the nucleosome, sealing the DNA coils, and to the linker DNA between nucleosomes, directing chromatin folding. Micrococcal nuclease (MNase) digests the linker to yield the chromatosome, containing H1 and ∼160 bp, and then converts it to a core particle, containing ∼147 bp and no H1. Sequencing of nucleosomal DNA obtained after MNase digestion (MNase-seq) generates genome-wide nucleosome maps that are important for understanding gene regulation. We present an improved MNase-seq method involving simultaneous digestion with exonuclease III, which removes linker DNA. Remarkably, we discovered two novel intermediate particles containing 154 or 161 bp, corresponding to 7 bp protruding from one or both sides of the nucleosome core. These particles are detected in yeast lacking H1 and in H1-depleted mouse chromatin. They can be reconstituted in vitro using purified core histones and DNA. We propose that these 'proto-chromatosomes' are fundamental chromatin subunits, which include the H1 binding site and influence nucleosome spacing independently of H1.


Subject(s)
DNA/metabolism , Histones/metabolism , Nucleosomes/chemistry , Animals , DNA/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Exodeoxyribonucleases/genetics , Exodeoxyribonucleases/metabolism , Female , Gene Expression , Histones/deficiency , Histones/genetics , Liver/metabolism , Mice , Micrococcal Nuclease/chemistry , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
16.
Cell Rep ; 13(4): 645-646, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26510160

ABSTRACT

Centromeric nucleosomes are critical for chromosome attachment to the mitotic spindle. In this issue of Cell Reports, Diaz-Ingelmo et al. (2015) propose that the yeast centromeric nucleosome is stabilized by a positively supercoiled loop formed by the sequence-specific CBF3 complex.


Subject(s)
Centromere , Nucleosomes , Histones/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
17.
Nucleic Acids Res ; 42(20): 12512-22, 2014 Nov 10.
Article in English | MEDLINE | ID: mdl-25348398

ABSTRACT

Eukaryotic chromatin is composed of nucleosomes, which contain nearly two coils of DNA wrapped around a central histone octamer. The octamer contains an H3-H4 tetramer and two H2A-H2B dimers. Gene activation is associated with chromatin disruption: a wider nucleosome-depleted region (NDR) at the promoter and reduced nucleosome occupancy over the coding region. Here, we examine the nature of disrupted chromatin after induction, using MNase-seq to map nucleosomes and subnucleosomes, and a refined high-resolution ChIP-seq method to map H4, H2B and RNA polymerase II (Pol II) genome-wide. Over coding regions, induced genes show a differential loss of H2B relative to H4, which correlates with Pol II density and the appearance of subnucleosomes. After induction, Pol II is surprisingly low at the promoter, but accumulates on the gene and downstream of the termination site, implying that dissociation is very slow. Thus, induction-dependent chromatin disruption reflects both eviction of H2A-H2B dimers and the presence of queued Pol II elongation complexes. We propose that slow Pol II dissociation after transcription is a major factor in chromatin disruption and that it may be of critical importance in gene regulation.


Subject(s)
Gene Expression Regulation, Fungal , Histones/metabolism , RNA Polymerase II/metabolism , Transcriptional Activation , Arginase/biosynthesis , Arginase/genetics , Nucleosomes/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis , Saccharomyces cerevisiae Proteins/genetics
18.
Arch Biochem Biophys ; 480(2): 95-103, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18854166

ABSTRACT

The strength of the interaction between the catalytic and regulatory subunits in protein kinase A differs among species. The linker region from regulatory subunits is non-conserved. To evaluate the participation of this region in the interaction with the catalytic subunit, we have assayed its effect on the enzymatic properties of the catalytic subunit. Protein kinase A from three fungi, Mucor rouxii, Mucor circinelloides and Saccharomyces cerevisiae have been chosen as models. The R-C interaction is explored by using synthetic peptides of 8, 18 and 47 amino acids, corresponding to the R subunit autophosphorylation site plus a variable region toward the N terminus (0, 10, or 39 residues). The K(m) of the catalytic subunits decreased with the length of the peptide, while the V(max) increased. Viscosity studies identified product release as the rate limiting step for phosphorylation of the longer peptides. Pseudosubstrate derivatives of the 18 residue peptides did not display a competitive inhibition behavior toward either kemptide or a bona fide protein substrate since, at low relative pseudosubstrate/substrate concentration, stimulation of kemptide or protein substrate phosphorylation was observed. The behavior was mimicked by intact R. We conclude that in addition to its negative regulatory role, the R subunit stimulates C activity via distal interactions.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Gene Expression Regulation, Fungal , Mucor/enzymology , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Amino Acids/chemistry , Catalysis , Catalytic Domain , Enzyme Activation , Kinetics , Molecular Sequence Data , Mucor/metabolism , Peptides/chemistry , Phosphorylation , Protein Structure, Tertiary , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid
19.
Biochem Biophys Res Commun ; 362(3): 721-6, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17761146

ABSTRACT

Protein kinase A from the fungus Mucor circinelloides shows high affinity interaction between regulatory (R) and catalytic (C) subunits. Its R subunit shows a differential presence of several acidic residues in linker I region, in the amino terminus. Mutants R1, lacking the N-terminal region, and R2, lacking the acidic cluster, were used to analyze its effect on the interaction with the C subunit, assessed through inhibition of catalytic activity and cAMP activation of reconstituted holoenzyme. A similar decrease in the interaction was obtained when using R1 and R2 with the homologous C subunit; however when using heterologous bovine C, only R1 had a decreased interaction. The results show the general importance of linker I region in the R-C interaction in protein kinases A and point to the importance of the acidic cluster present in the N-terminus of M. circinelloides R subunit in the high affinity interaction between R and C in this holoenzyme.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/physiology , Mucor/enzymology , Amino Acid Sequence , Animals , Catalytic Domain , Cattle , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dose-Response Relationship, Drug , Gene Expression Profiling , Kinetics , Molecular Sequence Data , Mutagenesis , Mutation , Phosphorylation , Protein Binding , Protein Structure, Tertiary , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...