Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4671, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821961

ABSTRACT

Efficient operation of control systems in robotics or autonomous driving targeting real-world navigation scenarios requires perception methods that allow them to understand and adapt to unstructured environments with good accuracy, adaptation, and generality, similar to humans. To address this need, we present a memristor-based differential neuromorphic computing, perceptual signal processing, and online adaptation method providing neuromorphic style adaptation to external sensory stimuli. The adaptation ability and generality of this method are confirmed in two application scenarios: object grasping and autonomous driving. In the former, a robot hand realizes safe and stable grasping through fast ( ~ 1 ms) adaptation based on the tactile object features with a single memristor. In the latter, decision-making information of 10 unstructured environments in autonomous driving is extracted with an accuracy of 94% with a 40×25 memristor array. By mimicking human low-level perception mechanisms, the electronic neuromorphic circuit-based method achieves real-time adaptation and high-level reactions to unstructured environments.

2.
Article in English | MEDLINE | ID: mdl-38083115

ABSTRACT

Photoplethysmography (PPG) sensors integrated in wearable devices offer the potential to monitor arterial blood pressure (ABP) in patients. Such cuffless, non-invasive, and continuous solution is suitable for remote and ambulatory monitoring. A machine learning model based on PPG signal can be used to detect hypertension, estimate beat-by-beat ABP values, and even reconstruct the shape of the ABP. Overall, models presented in literature have shown good performance, but there is a gap between research and potential real-world use cases. Usually, models are trained and tested on data from the same dataset and same subjects, which may lead to overestimating their accuracy. In this paper: we compare cross-validation, where the test data are from the same dataset as training data, and external validation, where the model is tested on samples from a new dataset, on a regression model which predicts diastolic blood pressure from PPG features. The results show that, in the cross-validation, the predicted and the real values are linearly dependent, while in the external validation, the predicted values are not related to the real ones, but probably just through an average value.


Subject(s)
Arterial Pressure , Photoplethysmography , Humans , Blood Pressure , Photoplethysmography/methods , Blood Pressure Determination/methods , Machine Learning
3.
Article in English | MEDLINE | ID: mdl-38082712

ABSTRACT

This work aims to classify physiological states using heart rate variability (HRV) features extracted from electrocardiograms recorded in the ears (ear-ECG). The physiological states considered in this work are: (a) normal breathing, (b) controlled slow breathing, and (c) mental exercises. Since both (b) and (c) cause higher variance in heartbeat intervals, breathing-related features (SpO2 and mean breathing interval) from the ear Photoplethysmogram (ear-PPG) are used to facilitate classification. This work: 1) proposes a scheme that, after initialization, automatically extracts R-peaks from low signal-to-noise ratio ear-ECG; 2) verifies the feasibility of extracting meaningful HRV features from ear-ECG; 3) quantitatively compares several ear-ECG sites; and 4) discusses the benefits of combining ear-ECG and ear-PPG features.


Subject(s)
Ear , Photoplethysmography , Heart Rate/physiology , Respiration , Electrocardiography
4.
Article in English | MEDLINE | ID: mdl-38083781

ABSTRACT

Accurate pulse-oximeter readings are critical for clinical decisions, especially when arterial blood-gas tests - the gold standard for determining oxygen saturation levels - are not available, such as when determining COVID-19 severity. Several studies demonstrate that pulse oxygen saturation estimated from photoplethysmography (PPG) introduces a racial bias due to the more profound scattering of light in subjects with darker skin due to the increased presence of melanin. This leads to an overestimation of blood oxygen saturation in those with darker skin that is increased for low blood oxygen levels and can result in a patient not receiving potentially life-saving supplemental oxygen. This racial bias has been comprehensively studied in conventional finger pulse oximetry but in other less commonly used measurement sites, such as in-ear pulse oximetry, it remains unexplored. Different measurement sites can have thinner epidermis compared with the finger and lower exposure to sunlight (such as is the case with the ear canal), and we hypothesise that this could reduce the bias introduced by skin tone on pulse oximetry. To this end, we compute SpO2 in different body locations, during rest and breath-holds, and compare with the index finger. The study involves a participant pool covering 6-pigmentation categories from Fitzpatrick's Skin Pigmentation scale. These preliminary results indicate that locations characterized by cartilaginous highly vascularized tissues may be less prone to the influence of melanin and pigmentation in the estimation of SpO2, paving the way for the development of non-discriminatory pulse oximetry devices.


Subject(s)
Racism , Skin Pigmentation , Humans , Melanins , Oximetry/methods , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...