Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Fitoterapia ; 149: 104796, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33271256

ABSTRACT

Five known compounds (1-5) were isolated from the extract of Mundulea sericea leaves. Similar investigation of the roots of this plant afforded an additional three known compounds (6-8). The structures were elucidated using NMR spectroscopic and mass spectrometric analyses. The absolute configuration of 1 was established using ECD spectroscopy. In an antiplasmodial activity assay, compound 1 showed good activity with an IC50 of 2.0 µM against chloroquine-resistant W2, and 6.6 µM against the chloroquine-sensitive 3D7 strains of Plasmodium falciparum. Some of the compounds were also tested for antileishmanial activity. Dehydrolupinifolinol (2) and sericetin (5) were active against drug-sensitive Leishmania donovani (MHOM/IN/83/AG83) with IC50 values of 9.0 and 5.0 µM, respectively. In a cytotoxicity assay, lupinifolin (3) showed significant activity on BEAS-2B (IC50 4.9 µM) and HePG2 (IC50 10.8 µM) human cell lines. All the other compounds showed low cytotoxicity (IC50 > 30 µM) against human lung adenocarcinoma cells (A549), human liver cancer cells (HepG2), lung/bronchus cells (epithelial virus transformed) (BEAS-2B) and immortal human hepatocytes (LO2).


Subject(s)
Antimalarials/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Antiprotozoal Agents/pharmacology , Fabaceae/chemistry , Antimalarials/isolation & purification , Antineoplastic Agents, Phytogenic/isolation & purification , Antiprotozoal Agents/isolation & purification , Cell Line, Tumor , Flavonoids , Humans , Kenya , Molecular Structure , Nitric Oxide/metabolism , Phytochemicals/isolation & purification , Phytochemicals/pharmacology , Plant Leaves/chemistry , Plant Roots/chemistry , Plasmodium falciparum/drug effects
2.
Molecules ; 25(18)2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32927597

ABSTRACT

Dodonaea viscosa Jacq (Sapindaceae) is a medicinal plant with a worldwide distribution. The species has undergone enormous taxonomic changes which caused confusion amongst plant users. In Kenya, for example, two varieties are known to exist based on morphology, i.e., D. viscosa var. viscosa along the coast, and D. viscosa var. angustifolia in the Kenyan inland. These two taxa are recognized as distinct species in some reports. This prompted us to apply metabolomics to understand the relationship among naturally occurring populations of D. viscosa in Kenya, and to identify compounds that can assist in taxonomic delineation of the different varieties of D. viscosa from different parts of Kenya. The phytochemical variability of Kenyan D. viscosa var. angustifolia populations collected from four different geographical regions (Nanyuki, Machakos, Nairobi, and Narok) and one coastal D. viscosa var. viscosa (the Gazi) were analyzed by LC-MS using a metabolomics-driven approach. Four known compounds, two diterpenoids (dodonic acid (1), hautriwaic acid lactone (3), and two flavonoids (5,7,4',5'-tetrahydroxy-3,6,2'-trimethoxyflavone (2) and catechin (4)) were isolated and purified from the Gazi coastal collection. The presence of these compounds and their relative abundance in other populations was determined by LC-MS analyses. Multivariate statistical analyses of LC-MS data was used for the visualization of the patterns of variation and identification of additional compounds. Eleven discriminant compounds responsible for separating chemometric clusters were tentatively identified. In an antimicrobial assay, hautriwaic acid lactone (3) and catechin (4) were the most active compounds followed by the extract from the coastal (Gazi) population. The clustering pattern of the five populations of D. viscosa suggested that the metabolite profiles were influenced by geo-environmental conditions and did not support the current classification of D. viscosa based on morphology. This study disputes the current classification of D. viscosa in Kenya and recommends revision using tools such as molecular phylogenetics.


Subject(s)
Computational Biology , Metabolomics , Phytochemicals/chemistry , Sapindaceae/chemistry , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Chromatography, Liquid , Computational Biology/methods , Discriminant Analysis , Kenya , Metabolomics/methods , Phytochemicals/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plants, Medicinal , Principal Component Analysis , Secondary Metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...