Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Zookeys ; 1164: 1-21, 2023.
Article in English | MEDLINE | ID: mdl-37273974

ABSTRACT

Phenacogaster is the most species-rich genus of the subfamily Characinae with 23 valid species broadly distributed in riverine systems of South America. Despite the taxonomic diversity of the genus, little has been advanced about its molecular diversity. A recent molecular phylogeny indicated the presence of undescribed species within Phenacogaster that is formally described here. We sampled 73 specimens of Phenacogaster and sequenced the mitochondrial cytochrome c oxidase subunit I (COI) gene in order to undertake species delimitation analyses and evaluate their intra- and interspecific genetic diversity. The results show the presence of 14 species, 13 of which are valid and one undescribed. The new species is known from the tributaries of the Xingu basin, the Rio das Mortes of the Araguaia basin, and the Rio Teles Pires of the Tapajós basin. It is distinguished by the incomplete lateral line, position of the humeral blotch near the pseudotympanum, and shape of the caudal-peduncle blotch. Meristic data and genetic differentiation relative to other Phenacogaster species represent strong evidence for the recognition of the new species and highlight the occurrence of an additional lineage of P.franciscoensis.

2.
Syst Biol ; 71(1): 78-92, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34097063

ABSTRACT

The Neotropics harbor the most species-rich freshwater fish fauna on the planet, but the timing of that exceptional diversification remains unclear. Did the Neotropics accumulate species steadily throughout their long history, or attain their remarkable diversity recently? Biologists have long debated the relative support for these museum and cradle hypotheses, but few phylogenies of megadiverse tropical clades have included sufficient taxa to distinguish between them. We used 1288 ultraconserved element loci spanning 293 species, 211 genera, and 21 families of characoid fishes to reconstruct a new, fossil-calibrated phylogeny and infer the most likely diversification scenario for a clade that includes a third of Neotropical fish diversity. This phylogeny implies paraphyly of the traditional delimitation of Characiformes because it resolves the largely Neotropical Characoidei as the sister lineage of Siluriformes (catfishes), rather than the African Citharinodei. Time-calibrated phylogenies indicate an ancient origin of major characoid lineages and reveal a much more recent emergence of most characoid species. Diversification rate analyses infer increased speciation and decreased extinction rates during the Oligocene at around 30 Ma during a period of mega-wetland formation in the proto-Orinoco-Amazonas. Three species-rich and ecomorphologically diverse lineages (Anostomidae, Serrasalmidae, and Characidae) that originated more than 60 Ma in the Paleocene experienced particularly notable bursts of Oligocene diversification and now account collectively for 68% of the approximately 2150 species of Characoidei. In addition to paleogeographic changes, we discuss potential accelerants of diversification in these three lineages. While the Neotropics accumulated a museum of ecomorphologically diverse characoid lineages long ago, this geologically dynamic region also cradled a much more recent birth of remarkable species-level diversity. [Biodiversity; Characiformes; macroevolution; Neotropics; phylogenomics; ultraconserved elements.].


Subject(s)
Catfishes , Characiformes , Animals , Biodiversity , Fossils , Phylogeny
3.
J Fish Biol ; 98(3): 668-679, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33128401

ABSTRACT

The Neotropical catfish genus Kronichthys contains three species distributed along coastal rivers of southern and southeastern Brazil. Although phylogenetic hypotheses are available, the molecular and morphological diversity and species boundaries within the genus remain unexplored. In this study, the authors generated mitochondrial data for 90 specimens combined with morphometric and meristic data to investigate species diversity, species boundaries and putative morphological signatures in Kronichthys. Phylogenetic and species delimitation results clearly show the presence of four genetic lineages, three within Kronichthys heylandi along the coast from Rio de Janeiro to southern São Paulo and a single lineage encompassing both the nominal species Kronichthys lacerta and Kronichthys subteres from the Ribeira de Iguape basin to Santa Catarina in southern Brazil. Nonetheless, morphological data show overlapped ranges in morphometrics and a definition of only two morphotypes, with clear phenotypic differences in the teeth number: K. heylandi differs from K. subteres + K. lacerta by the higher number of premaxillary teeth (30-52 vs. 19-28) and higher number of dentary teeth (28-54 vs. 17-28). Headwater captures and connections of paleodrainages because of sea-level fluctuations represent the two major biogeographic processes promoting species diversification and lineage dispersal of Kronichthys in the Atlantic coastal range of Brazil.


Subject(s)
Biodiversity , Catfishes/classification , Animals , Brazil , Catfishes/anatomy & histology , Catfishes/genetics , Genetic Variation , Phylogeny , Rivers
4.
Mol Phylogenet Evol ; 153: 106945, 2020 12.
Article in English | MEDLINE | ID: mdl-32861778

ABSTRACT

The Neotropical fish family Serrasalmidae comprises 16 extant genera and 101 species widespread through major Neotropical rivers with relevant importance for regional fisheries and aquaculture. The monophyly of Serrasalmidae and the recognition of three main clades are recurrent between morphological and molecular phylogenies. However, both intergeneric and interspecific relationships within each of those clades remain uncertain. Here, we used 81 terminals of 69 species (68%) and all 16 genera of Serrasalmidae to sequence 1553 loci of ultraconserved elements (UCEs), multiple nuclear loci widely applied in phylogenetic studies, and performed maximum likelihood, Bayesian, and species tree analyses. We obtained highly supported phylogenies in all applied methods corroborating the monophyly of Serrasalmidae and the three-clade hypotheses herein proposed as two subfamilies and two tribes: (Colossomatinae (Serrasalminae (Myleini + Serrasalmini))). Morphological features for each subfamily involve the absence (Colossomatinae) or presence (Serrasalminae) of a pre-dorsal spine. Morphological diagnoses among tribes include the pre-dorsal spine being continuous (Myleini) or discontinuous (Serrasalmini) relative to the first unbranched dorsal-fin ray. Our results highlight the complexity of the relationships especially the non-monophyly of Myleus, Mylesinus, Myloplus, Tometes, and Utiaritichthys within Myleini, as well as of Serrasalmus and Pristobrycon within Serrasalmini.


Subject(s)
Characiformes/classification , Characiformes/genetics , Phylogeny , Animals , Bayes Theorem , Characiformes/anatomy & histology , Conserved Sequence/genetics , Rivers
5.
Sci Rep ; 10(1): 2697, 2020 02 14.
Article in English | MEDLINE | ID: mdl-32060350

ABSTRACT

The family Trichomycteridae is one of the most diverse groups of freshwater catfishes in South and Central America with eight subfamilies, 41 genera and more than 300 valid species. Its members are widely distributed throughout South America, reaching Costa Rica in Central America and are recognized by extraordinary anatomical specializations and trophic diversity. In order to assess the phylogenetic relationships of Trichomycteridae, we collected sequence data from ultraconserved elements (UCEs) of the genome from 141 specimens of Trichomycteridae and 12 outgroup species. We used a concatenated matrix to assess the phylogenetic relationships by Bayesian inference (BI) and maximum likelihood (ML) searches and a coalescent analysis of species trees. The results show a highly resolved phylogeny with broad agreement among the three distinct analyses, providing overwhelming support for the monophyletic status of subfamily Trichomycterinae including Ituglanis and Scleronema. Previous relationship hypotheses among subfamilies are strongly corroborated, such as the sister relationship between Copionodontinae and Trichogeninae forming a sister clade to the remaining trichomycterids and the intrafamilial clade TSVSG (Tridentinae-Stegophilinae-Vandelliinae-Sarcoglanidinae-Glanapteryginae). Monophyly of Glanapteryginae and Sarcoglanidinae was not supported and the enigmatic Potamoglanis is placed outside Tridentinae.


Subject(s)
Catfishes/genetics , Genetic Variation/genetics , Phylogeny , Animals , Bayes Theorem , Catfishes/classification , Sequence Analysis, DNA
6.
Neotrop. ichthyol ; 18(4): e200048, 2020. graf
Article in English | LILACS, VETINDEX | ID: biblio-1143350

ABSTRACT

Catfishes of the family Astroblepidae form a group composed by 82 valid species of the genus Astroblepus inhabiting high-gradient streams and rivers throughout tropical portions of the Andean Cordillera. Little has been advanced in the systematics and biodiversity of astroblepids other than an unpublished thesis, a single regional multilocus study and isolated species descriptions. Here, we examined 208 specimens of Astroblepus that apparently belong to 16 valid species from several piedmont rivers from northern Colombia to southern Peru. Using three single-locus approaches for species delimitation in combination with a species tree analysis estimated from three mitochondrial genes, we identified a total of 25 well-delimited lineages including eight valid and 17 potential undescribed species distributed in two monophyletic groups: the Central Andes Clade, which contains 14 lineages from piedmont rivers of the Peruvian Amazon, and the Northern Andes Clade with 11 lineages from trans- and cis-Andean rivers of Colombia and Ecuador, including the Orinoco, Amazon, and Magdalena-Cauca basins and Pacific coastal drainages. Results of species delimitation methods highlight several taxonomical incongruences in recently described species denoting potential synonymies.(AU)


Los bagres de la familia Astroblepidae son un grupo compuesto por 82 especies válidas del género Astroblepus que habitan quebradas y ríos de alto gradiente a través de la porcion tropical en la Cordillera de los Andes. Poco se ha avanzado en la sistemática y biodiversidad de los astroblepidos aparte de una tesis no publicada, un único estudio multilocus regional y descripciones aisladas de especies. Aquí, examinamos 208 especímenes de Astroblepus que aparentemente pertenecen a 16 especies válidas provenientes de ríos de pie de monte de la cordillera de los Andes, desde el norte de Colombia hasta el sur de Perú. Utilizando tres metodologías de delimitación de especies para un único locus en combinación con análisis de un árbol de especies a partir de tres genes mitocondriales, identificamos un total de 25 linajes bien definidos que incluyen ocho especies válidas y 17 potenciales especies no descritas distribuidas en dos grupos monofiléticos: un clado de los andes centrales, que contiene 14 especies de los ríos de pie de monte de la Amazonía peruana y un clado de los andes del norte con 11 especies de los ríos trans y cisandinos de Colombia y Ecuador, incluyendo las cuencas del Orinoco, Amazonas y Magdalena-Cauca así como drenajes costeros del Pacífico. Los resultados de los métodos de delimitación de especies destacan varias incongruencias taxonómicas en especies recientemente descritas que denotan posibles sinonimias.(AU)


Subject(s)
Animals , Amazonian Ecosystem , Biodiversity , Catfishes , Gender Identity
7.
Mol Phylogenet Evol ; 135: 148-165, 2019 06.
Article in English | MEDLINE | ID: mdl-30802595

ABSTRACT

Neotropical freshwaters host more than 6000 fish species, of which 983 are suckermouth armored catfishes of the family Loricariidae - the most-diverse catfish family and fifth most species-rich vertebrate family on Earth. Given their diversity and ubiquitous distribution across many habitat types, loricariids are an excellent system in which to investigate factors that create and maintain Neotropical fish diversity, yet robust phylogenies needed to support such ecological and evolutionary studies are lacking. We sought to buttress the systematic understanding of loricariid catfishes by generating a genome-scale data set (1041 loci, 328,330 bp) for 140 species spanning 75 genera and five of six previously proposed subfamilies. Both maximum likelihood and Bayesian analyses strongly supported the monophyly of Loricariidae. Our results also reinforced the established backbone of loricariid interrelationships: Delturinae as sister to all other analyzed loricariids, with subfamily Rhinelepinae diverging next, followed by Loricariinae sister to Hypostominae + Hypoptopomatinae. Previous DNA-based relationships within Hypostominae and Loricariinae were strongly supported. However, we evaluated for the first time DNA-based relationships among many Hypoptopomatinae genera and found significant differences with this subfamily's current genus-level classification, prompting several taxonomic changes. Finally, we placed our topological results within a fossil-calibrated temporal context indicating that early Loricariidae diversification occurred across the Cretaceous-Paleogene boundary ∼65 million years ago (Ma). Our study lays a strong foundation for future research to focus on relationships among species and the macroevolutionary processes affecting loricariid diversification rates and patterns.


Subject(s)
Catfishes/classification , Catfishes/genetics , Conserved Sequence , Phylogeny , Animals , Base Sequence , Bayes Theorem , Calibration , Conserved Sequence/genetics , Ecosystem , Likelihood Functions , Sequence Analysis, DNA , Species Specificity , Time Factors
8.
Mol Phylogenet Evol ; 115: 71-81, 2017 10.
Article in English | MEDLINE | ID: mdl-28716740

ABSTRACT

Trichomycteridae is the second most diverse family of the order Siluriformes, its members are widely distributed through the freshwaters of Central and South America, exhibiting an exceptional ecological and phenotypic disparity. The most diverse subfamily, Trichomycterinae, represented mainly by the genus Trichomycterus, historically has been recognized as non-monophyletic and various characters used to unite or divide its constituents are repeatedly called into question. No comprehensive molecular phylogenetic hypothesis regarding relationships of trichomycterids has been produced, and the present study is the first extensive phylogeny for the family Trichomycteridae, based on a multilocus dataset of three mitochondrial loci and two nuclear markers (3284bp total). Our analysis has the most comprehensive taxon-sampling of the Trichomycteridae published so far, including members of all subfamilies and a vast representation of Trichomycterus diversity. Analysis of these data showed a phylogenetic hypothesis with broad agreement between the Bayesian (BI) and maximum-likelihood (ML) trees. The results provided overwhelming support for the monophyletic status of Copionodontinae, Stegophilinae, Trichomycterinae, and Vandelliinae, but not Sarcoglanidinae and Glanapteryginae. A major feature of our results is the support to the current conceptualization of Trichomycterinae, which includes Ituglanis and Scleronema and excludes the "Trichomycterus" hasemani group. Divergence time analysis based on DNA substitution rates suggested a Lower Cretaceous origin of the family and the divergence events at subfamilial level shaped by Paleogene events in the geohistory of South America. This hypothesis lays a foundation for an array of future studies of evolution and biogeography of the family.


Subject(s)
Catfishes/classification , Animals , Bayes Theorem , Catfishes/genetics , Cytochromes b/classification , Cytochromes b/genetics , DNA/chemistry , DNA/isolation & purification , DNA/metabolism , Electron Transport Complex IV/classification , Electron Transport Complex IV/genetics , Mitochondria/genetics , Myosin Heavy Chains/classification , Myosin Heavy Chains/genetics , Nuclear Proteins/classification , Nuclear Proteins/genetics , Phylogeny , RNA, Ribosomal, 16S/classification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
9.
Zookeys ; (598): 129-57, 2016.
Article in English | MEDLINE | ID: mdl-27408594

ABSTRACT

This study presents the description of a new genus of the catfish subfamily Neoplecostominae from the Tocantins River basin. It can be distinguished from other neoplecostomine genera by the presence of (1) three hypertrophied bicuspid odontodes on the lateral portion of the body (character apparently present in mature males); (2) a large area without odontodes around the snout; (3) a post-dorsal ridge on the caudal peduncle; (4) a straight tooth series in the dentary and premaxillary rows; (5) the absence of abdominal plates; (6) a conspicuous series of enlarged papillae just posterior to the dentary teeth; and (7) caudal peduncle ellipsoid in cross section. We used maximum likelihood and Bayesian methods to estimate a time-calibrated tree with the published data on 116 loricariid species using one nuclear and three mitochondrial genes, and we used parametric biogeographic analyses (DEC and DECj models) to estimate ancestral geographic ranges and to infer the colonization routes of the new genus and the other neoplecostomines in the Tocantins River and the hydrographic systems of southeastern Brazil. Our phylogenetic results indicate that the new genus and species is a sister taxon of all the other members of the Neoplecostominae, originating during the Eocene at 47.5 Mya (32.7-64.5 Mya 95% HPD). The present distribution of the new genus and other neoplecostomines may be the result of a historical connection between the drainage basins of the Paraguay and Paraná rivers and the Amazon basin, mainly through headwater captures.

10.
Zookeys ; (534): 103-34, 2015.
Article in English | MEDLINE | ID: mdl-26668550

ABSTRACT

The genus Hisonotus was resurrected as a member of the tribe Otothyrini (actually subfamily Otothyrinae). However, phylogenetic studies based on morphological and molecular data showed that Hisonotus is not monophyletic and independent lineages can be identified, such as the group composed of the species Hisonotus insperatus, Hisonotus luteofrenatus, Hisonotus oliveirai, Hisonotus paresi and Hisonotus piracanjuba, a lineage unrelated to that containing the type species of the genus Hisonotus (Hisonotus notatus). Herein, based in molecular and morphological data, a new genus is described to accommodate the lineage mentioned above, into which are also added three new species. This new genus can be distinguished from other genera of Otothyrinae by the following combination of characters: (1) a pair of rostral plates at the tip of the snout; (2) two large pre-nasal plates just posterior to the rostral plates; (3) a supra-opercular plate that receives the laterosensory canal from the compound pterotic before the preopercle; (4) a well developed membrane at anal opening in females; and (5) a V-shaped spinelet. A key to species of Curculionichthys is provided.

11.
Zookeys ; (481): 109-30, 2015.
Article in English | MEDLINE | ID: mdl-25685034

ABSTRACT

The present study deals with the description of a new species of Rhinolekos. It can be distinguished from its congeners by having 31 vertebrae, the anterior portion of the compound supraneural-first dorsal-fin proximal radial contacting the neural spine of the 9(th) vertebra, the absence of transverse dark bands in the pectoral, pelvic and anal-fin rays, 24-28 plates in the dorsal series, the lack of odontodes on the ventral tip of the snout, the absence of accessory teeth, a greater prenasal length, a smaller head length, and by a greater snout length. Rhinolekoscapetinga is restricted to the headwaters of the rio Tocantins and it is the first species of this genus in the Amazon basin. Additionally, we present a brief discussion of a biogeographic scenario that may explain the dispersal of the new species from the rio Paranaíba to the rio Tocantins basin. We suggest that the ancestral lineage of Rhinolekoscapetinga reached the rio Tocantins from portions of the rio Paranaíba at the end of the Miocene, about 6.3 Mya (4.1-13.9 Mya 95% HPD), probably as a result of headwater capture processes among adjacent drainages.

SELECTION OF CITATIONS
SEARCH DETAIL
...