Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Micron ; 52-53: 39-44, 2013.
Article in English | MEDLINE | ID: mdl-23972604

ABSTRACT

The dielectric properties of V2O5 nanofibers, synthesized by the electrospinning method, are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) in a transmission electron microscope. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the Generalized Gradient Approximation (GGA) is presented, having found an excellent agreement between them. Although the experimental EELS has been acquired for the nanoparticles composing the fibers, and numerical calculations were carried out for bulk material, agreement between experimental and calculated results shows that no difference exists between the electronic structure in calculated bulk material and the nanoparticles. Furthermore, our results from EELS confirm that we accomplished the expected crystalline phase. The origins of interband transitions are identified in the electronic band structure by calculating the partial imaginary part of the dielectric function and the partial density of states.

3.
Micron ; 40(8): 787-92, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19674912

ABSTRACT

Changes in the dielectric properties during the thermochromic transition of commercial VO(2) powders were determined in situ, by analyzing the low-loss region of the electron energy-loss spectroscopy (EELS) spectra in a transmission electron microscope at room temperature (insulator phase) and 100 degrees C (metallic phase). A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the generalized gradient approximation (GGA) is presented. A characteristic peak around 5.6 eV appears in the energy-loss function in metallic phase, which is absent in insulator phase. The origin of the characteristic peak is analyzed by means of energy-band structure calculations.

4.
Micron ; 40(4): 434-8, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19303783

ABSTRACT

The dielectric properties of cubic spinel-type LiMn(2)O(4), used as cathode material in lithium ion secondary batteries, are studied by analyzing the low-loss region of the electron energy loss spectroscopy (EELS) spectrum in a transmission electron microscope. A comparison of experimental EELS spectra and ab initio density-functional theory calculations (WIEN2k code) within the generalized gradient approximation (GGA) is presented. The origins of interband transitions are identified in the electronic band structure, by calculating the partial imaginary part of the dielectric function and the partial density of states of Li, Mn and O. Good agreement with experimental spectra is observed which allowed interpreting main features of the EELS spectrum.

SELECTION OF CITATIONS
SEARCH DETAIL
...