Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Am J Bot ; 111(7): e16377, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39010307

ABSTRACT

PREMISE: Evolution of cross-pollination efficiency depends on the genetic variation of flower traits, the pollen vector, and flower trait matching between pollen donors and recipients. Trait matching has been almost unexplored among nonheterostylous species, and we examined whether the match of anther length in pollen donors and stigma length in pollen recipients influences the efficiency of cross-pollination. To explore potential constraints for evolutionary response, we also quantified genetic variation and covariation among sepal length, petal length and width, stamen length, style length, and herkogamy. METHODS: We created 58 experimental arrays of Turnera velutina that varied in the extent of mismatch in the position of anthers and stigmas between single-flowered plants. Genetic variation and correlations among flower traits were estimated under greenhouse conditions. RESULTS: Style length, but not herkogamy, influenced the efficiency of cross-pollination. Plants with stamen length that matched the style length of other plants were more efficient pollen donors, whereas those with the style protruding above the stamens of other plants were more efficient pollen recipients. Significant broad-sense heritability (0.22 > hB 2 < 0.42) and moderate genetic correlations (0.33 > r < 0.85) among floral traits were detected. CONCLUSIONS: Our results demonstrated that anther-stigma mismatch between flowers contributed to variation in the efficiency of cross-pollination. The genetic correlations between stamen length and other floral traits suggests that any change in cross-pollination efficiency would be driven by changes in style rather than in stamen length.


Subject(s)
Flowers , Pollen , Pollination , Flowers/physiology , Flowers/anatomy & histology , Flowers/genetics , Pollen/physiology , Pollen/genetics , Genetic Variation , Phenotype
2.
Mol Ecol ; 33(17): e17472, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39077982

ABSTRACT

Environmental microbes routinely colonize wildlife body surface microbiota. However, animals experience dynamic environmental shifts throughout their daily routine. Yet, the effect of ecological shifts in wildlife body surface microbiota has been poorly explored. Here, we sequenced the hypervariable region V3-V4 of the 16S rRNA gene to characterize the body surface microbiota of wild Magellanic penguins (Spheniscus magellanicus) under two ecological contexts: (1) Penguins walking along the coast and (2) Penguins sheltered underground in their nest, across three subantarctic breeding colonies in the Magellan Strait, Chile. Despite ecological contexts, our results revealed that Moraxellaceae bacteria were the most predominant and abundant taxa associated with penguin body surfaces. Nevertheless, we detected colony-specific core bacteria associated with penguin bodies. The most abundant were: Deinococcus in the Contramaestre colony, Fusobacterium in the Tuckers 1 colony, and Clostridium sensu stricto 1 in the Tuckers 2 colony. Our results give a new perspective on the niche environmental hypothesis for wild seabirds. First, the ecological characteristics of each colony were associated with the microbial communities from the nest soil and the body surface of penguins inside the nests. For example, in the colonies with heterogenous vegetation cover (i.e. the Tuckers Islets), there was a similar microbial composition between the nest soil and the body surface of penguins. In contrast, on the more arid colony (Contramaestre), we detected differences in the microbial communities between the nest soil and the body surface of penguins.


Subject(s)
Bacteria , Microbiota , RNA, Ribosomal, 16S , Spheniscidae , Animals , Spheniscidae/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Bacteria/classification , Bacteria/genetics , Chile , Breeding , Ecosystem
3.
PeerJ ; 11: e16290, 2023.
Article in English | MEDLINE | ID: mdl-37933257

ABSTRACT

Animal hosts live in continuous interaction with bacterial partners, yet we still lack a clear understanding of the ecological drivers of animal-associated bacteria, particularly in seabirds. Here, we investigated the effect of body site in the structure and diversity of bacterial communities of two seabirds in the Strait of Magellan: the Magellanic penguin (Spheniscus magellanicus) and the king penguin (Aptenodytes patagonicus). We used 16S rRNA gene sequencing to profile bacterial communities associated with body sites (chest, back, foot) of both penguins and the nest soil of Magellanic penguin. Taxonomic composition showed that Moraxellaceae family (specifically Psychrobacter) had the highest relative abundance across body sites in both penguin species, whereas Micrococacceae had the highest relative abundance in nest soil. We were able to detect a bacterial core among 90% of all samples, which consisted of Clostridium sensu stricto and Micrococcacea taxa. Further, the king penguin had its own bacterial core across its body sites, where Psychrobacter and Corynebacterium were the most prevalent taxa. Microbial alpha diversity across penguin body sites was similar in most comparisons, yet we found subtle differences between foot and chest body sites of king penguins. Body site microbiota composition differed across king penguin body sites, whereas it remained similar across Magellanic penguin body sites. Interestingly, all Magellanic penguin body site microbiota composition differed from nest soil microbiota. Finally, bacterial abundance in penguin body sites fit well under a neutral community model, particularly in the king penguin, highlighting the role of stochastic process and ecological drift in microbiota assembly of penguin body sites. Our results represent the first report of body site bacterial communities in seabirds specialized in subaquatic foraging. Thus, we believe it represents useful baseline information that could serve for long-term comparisons that use marine host microbiota to survey ocean health.


Subject(s)
Microbiota , Spheniscidae , Animals , RNA, Ribosomal, 16S , Soil
4.
PeerJ ; 11: e15978, 2023.
Article in English | MEDLINE | ID: mdl-37810788

ABSTRACT

Host-microbe interactions are ubiquitous and play important roles in host biology, ecology, and evolution. Yet, host-microbe research has focused on inland species, whereas marine hosts and their associated microbes remain largely unexplored, especially in developing countries in the Southern Hemisphere. Here, we review the current knowledge of marine host microbiomes in the Southern Hemisphere. Our results revealed important biases in marine host species sampling for studies conducted in the Southern Hemisphere, where sponges and marine mammals have received the greatest attention. Sponge-associated microbes vary greatly across geographic regions and species. Nevertheless, besides taxonomic heterogeneity, sponge microbiomes have functional consistency, whereas geography and aging are important drivers of marine mammal microbiomes. Seabird and macroalgal microbiomes in the Southern Hemisphere were also common. Most seabird microbiome has focused on feces, whereas macroalgal microbiome has focused on the epibiotic community. Important drivers of seabird fecal microbiome are aging, sex, and species-specific factors. In contrast, host-derived deterministic factors drive the macroalgal epibiotic microbiome, in a process known as "microbial gardening". In turn, marine invertebrates (especially crustaceans) and fish microbiomes have received less attention in the Southern Hemisphere. In general, the predominant approach to study host marine microbiomes has been the sequencing of the 16S rRNA gene. Interestingly, there are some marine holobiont studies (i.e., studies that simultaneously analyze host (e.g., genomics, transcriptomics) and microbiome (e.g., 16S rRNA gene, metagenome) traits), but only in some marine invertebrates and macroalgae from Africa and Australia. Finally, we introduce an ongoing project on the surface microbiome of key species in the Strait of Magellan. This is an international project that will provide novel microbiome information of several species in the Strait of Magellan. In the short-term, the project will improve our knowledge about microbial diversity in the region, while long-term potential benefits include the use of these data to assess host-microbial responses to the Anthropocene derived climate change.


Subject(s)
Eukaryota , Microbiota , Animals , Eukaryota/genetics , RNA, Ribosomal, 16S/genetics , Microbiota/genetics , Metagenome , Fishes/genetics , Aquatic Organisms/genetics , Mammals/genetics
5.
Front Microbiol ; 13: 979817, 2022.
Article in English | MEDLINE | ID: mdl-36246214

ABSTRACT

The gut microbiota is key for the homeostasis of many phytophagous insects, but there are few studies comparing its role on host use by stenophagous or polyphagous frugivores. Guava (Psidium guajava) is a fruit infested in nature by the tephritids Anastrepha striata and A. fraterculus. In contrast, the extremely polyphagous A. ludens infests guava only under artificial conditions, but unlike A. striata and the Mexican A. fraterculus, it infests bitter oranges (Citrus x aurantium). We used these models to analyze whether the gut microbiota could explain the differences in host use observed in these flies. We compared the gut microbiota of the larvae of the three species when they developed in guava and the microbiota of the fruit pulp larvae fed on. We also compared the gut microbiota of A. ludens developing in C. x aurantium with the pulp microbiota of this widely used host. The three flies modified the composition of the host pulp microbiota (i.e., pulp the larvae fed on). We observed a depletion of Acetic Acid Bacteria (AAB) associated with a deleterious phenotype in A. ludens when infesting P. guajava. In contrast, the ability of A. striata and A. fraterculus to infest this fruit is likely associated to a symbiotic interaction with species of the Komagataeibacter genus, which are known to degrade a wide spectrum of tannins and polyphenols. The three flies establish genera specific symbiotic associations with AABs. In the case of A. ludens, the association is with Gluconobacter and Acetobacter, but importantly, it cannot be colonized by Komagataeibacter, a factor likely inhibiting its development in guava.

SELECTION OF CITATIONS
SEARCH DETAIL