Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Sci ; 136(23)2023 12 01.
Article in English | MEDLINE | ID: mdl-38095645

ABSTRACT

The primary cilium is a conserved microtubule-based organelle that is critical for transducing developmental, sensory and homeostatic signaling pathways. It comprises an axoneme with nine parallel doublet microtubules extending from the basal body, surrounded by the ciliary membrane. The axoneme exhibits remarkable stability, serving as the skeleton of the cilium in order to maintain its shape and provide tracks to ciliary trafficking complexes. Although ciliary trafficking and signaling have been exhaustively characterized over the years, less is known about the unique structural and functional complexities of the axoneme. Recent work has yielded new insights into the mechanisms by which the axoneme is built with its proper length and architecture, particularly regarding the activity of microtubule-associated proteins (MAPs). In this Review, we first summarize current knowledge about the architecture, composition and specialized compartments of the primary cilium. Next, we discuss the mechanistic underpinnings of how a functional cilium is assembled, maintained and disassembled through the regulation of its axonemal microtubules. We conclude by examining the diverse localizations and functions of ciliary MAPs for the pathobiology of ciliary diseases.


Subject(s)
Cilia , Ciliopathies , Humans , Cilia/metabolism , Microtubules/metabolism , Axoneme/metabolism , Ciliopathies/genetics , Ciliopathies/metabolism , Microtubule-Associated Proteins/metabolism
2.
J Cell Biol ; 222(12)2023 12 04.
Article in English | MEDLINE | ID: mdl-37934472

ABSTRACT

Centrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility. Here, we identified CCDC15 as a centriole protein that colocalizes with and interacts with the inner scaffold, a crucial centriolar subcompartment for centriole size control and integrity. Using ultrastructure expansion microscopy, we found that CCDC15 depletion affects centriole length and integrity, leading to defective cilium formation, maintenance, and response to Hedgehog signaling. Moreover, loss-of-function experiments showed CCDC15's role in recruiting both the inner scaffold protein POC1B and the distal SFI1/Centrin-2 complex to centrioles. Our findings reveal players and mechanisms of centriole architectural integrity and insights into diseases linked to centriolar defects.


Subject(s)
Centrioles , Hedgehog Proteins , Cell Division , Centrosome , Cilia , Humans
3.
J Cell Sci ; 136(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36606424

ABSTRACT

The primary cilium is a microtubule-based organelle that serves as a hub for many signaling pathways. It functions as part of the centrosome or cilium complex, which also contains the basal body and the centriolar satellites. Little is known about the mechanisms by which the microtubule-based ciliary axoneme is assembled with a proper length and structure, particularly in terms of the activity of microtubule-associated proteins (MAPs) and the crosstalk between the different compartments of the centrosome or cilium complex. Here, we analyzed CCDC66, a MAP implicated in cilium biogenesis and ciliopathies. Live-cell imaging revealed that CCDC66 compartmentalizes between centrosomes, centriolar satellites, and the ciliary axoneme and tip during cilium biogenesis. CCDC66 depletion in human cells causes defects in cilium assembly, length and morphology. Notably, CCDC66 interacts with the ciliopathy-linked MAPs CEP104 and CSPP1, and regulates axonemal length and Hedgehog pathway activation. Moreover, CCDC66 is required for the basal body recruitment of transition zone proteins and intraflagellar transport B (IFT-B) machinery. Overall, our results establish CCDC66 as a multifaceted regulator of the primary cilium and provide insight into how ciliary MAPs and subcompartments cooperate to ensure assembly of functional cilia.


Subject(s)
Axoneme , Cilia , Humans , Cilia/metabolism , Axoneme/metabolism , Hedgehog Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Centrioles/metabolism , Eye Proteins/metabolism
4.
Mol Biol Cell ; 31(9): 866-872, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32286929

ABSTRACT

Centriolar satellites are membraneless granules that localize and move around centrosomes and cilia. Once referred to as structures with no obvious function, research in the past decade has identified satellites as key regulators of a wide range of cellular and organismal processes. Importantly, these studies have revealed a substantial overlap between functions, proteomes, and disease links of satellites with centrosomes and cilia. Therefore, satellites are now accepted as the "third component" of the vertebrate centrosome/cilium complex, which profoundly changes the way we think about the assembly, maintenance, and remodeling of the complex at the cellular and organismal levels. In this perspective, we first provide an overview of the cellular and structural complexities of centriolar satellites. We then describe the progress in the identification of the satellite interactome, which have paved the way to a molecular understanding of their mechanism of action and assembly mechanisms. After exploring current insights into their functions as recently described by loss-of-function studies and comparative evolutionary approaches, we discuss major unanswered questions regarding their functional and compositional diversity and their functions outside centrosomes and cilia.


Subject(s)
Centrioles/metabolism , Cilia/metabolism , Animals , Centrioles/physiology , Cilia/physiology , Humans , Vertebrates/metabolism , Vertebrates/physiology
5.
J Mol Biol ; 432(4): 1199-1215, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31931009

ABSTRACT

Ras recruits and activates effectors that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, Raf's activation requires dimerization, which can be facilitated by Ras dimerization. Previously, we showed that active K-Ras4B dimerizes in silico and in vitro through two major interfaces: (i) ß-interface, mapped to Switch I and effector-binding regions, (ii) α-interface at the allosteric lobe. Here, we chose constitutively active K-Ras4B as our control and two double mutants (K101D and R102E; and R41E and K42D) in the α- and ß-interfaces. Two of the mutations are from The Cancer Genome Atlas (TCGA) and the Catalogue Of Somatic Mutations In Cancer (COSMIC) data sets. R41 and R102 are found in several adenocarcinomas in Ras isoforms. We performed site-directed mutagenesis, cellular localization experiments, and molecular dynamics (MD) simulations to assess the impact of the mutations on K-Ras4B dimerization and function. α-interface K101D/R102E double mutations reduced dimerization but only slightly reduced downstream phosphorylated extracellular signal-regulated kinase (ERK) (pERK) levels. While ß-interface R41E/K42D double mutations did not interfere with dimerization, they almost completely blocked K-Ras4B-mediated ERK phosphorylation. Both double mutations increased downstream phosphorylated Akt (pAkt) levels in cells. Changes in pERK and pAkt levels altered ERK- and Akt-regulated gene expressions, such as EGR1, JUN, and BCL2L11. These results underscore the role of the α-interface in K-Ras4B homodimerization and the ß-surface in effector binding. MD simulations highlight that the membrane and hypervariable region (HVR) interact with both α- and ß-interfaces of K-Ras4B mutants, respectively, inhibiting homodimerization and probably effector binding. Mutations at both interfaces interfered with mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase signaling but in different forms and extents. We conclude that dimerization is not necessary but enhances downstream MAPK signaling.


Subject(s)
Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Amino Acid Sequence , Fluorescence Resonance Energy Transfer , HEK293 Cells , Humans , Mitogen-Activated Protein Kinases/genetics , Molecular Dynamics Simulation , Mutation/genetics , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Signal Transduction/genetics , Signal Transduction/physiology , ras Proteins/chemistry , ras Proteins/genetics , ras Proteins/metabolism
6.
EMBO Rep ; 20(6)2019 06.
Article in English | MEDLINE | ID: mdl-31023719

ABSTRACT

Centriolar satellites are ubiquitous in vertebrate cells. They have recently emerged as key regulators of centrosome/cilium biogenesis, and their mutations are linked to ciliopathies. However, their precise functions and mechanisms of action remain poorly understood. Here, we generated a kidney epithelial cell line (IMCD3) lacking satellites by CRISPR/Cas9-mediated PCM1 deletion and investigated the cellular and molecular consequences of satellite loss. Cells lacking satellites still formed full-length cilia but at significantly lower numbers, with changes in the centrosomal and cellular levels of key ciliogenesis factors. Using these cells, we identified new ciliary functions of satellites such as regulation of ciliary content, Hedgehog signaling, and epithelial cell organization in three-dimensional cultures. However, other functions of satellites, namely proliferation, cell cycle progression, and centriole duplication, were unaffected in these cells. Quantitative transcriptomic and proteomic profiling revealed that loss of satellites affects transcription scarcely, but significantly alters the proteome. Importantly, the centrosome proteome mostly remains unaltered in the cells lacking satellites. Together, our findings identify centriolar satellites as regulators of efficient cilium assembly and function and provide insight into disease mechanisms of ciliopathies.


Subject(s)
Centrioles/genetics , Centrioles/metabolism , Cilia/enzymology , Cilia/metabolism , DNA, Satellite , Organogenesis , Animals , Autoantigens/genetics , Autoantigens/metabolism , Bioaccumulation , Cell Adhesion , Cell Cycle/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Epithelial Cells , Gene Knockdown Techniques , Gene Rearrangement , Hedgehog Proteins/metabolism , Humans , Mice , Proteome , Transcriptome
7.
J Cell Sci ; 130(8): 1450-1462, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28235840

ABSTRACT

Centriolar satellites are membrane-less structures that localize and move around the centrosome and cilium complex in a microtubule-dependent manner. They play important roles in centrosome- and cilium-related processes, including protein trafficking to the centrosome and cilium complex, and ciliogenesis, and they are implicated in ciliopathies. Despite the important regulatory roles of centriolar satellites in the assembly and function of the centrosome and cilium complex, the molecular mechanisms of their functions remain poorly understood. To dissect the mechanism for their regulatory roles during ciliogenesis, we performed an analysis to determine the proteins that localize in close proximity to the satellite protein CEP72, among which was the retinal degeneration gene product CCDC66. We identified CCDC66 as a microtubule-associated protein that dynamically localizes to the centrosome, centriolar satellites and the primary cilium throughout the cell cycle. Like the BBSome component BBS4, CCDC66 distributes between satellites and the primary cilium during ciliogenesis. CCDC66 has extensive proximity interactions with centrosome and centriolar satellite proteins, and co-immunoprecipitation experiments revealed interactions between CCDC66, CEP290 and PCM1. Ciliogenesis, ciliary recruitment of BBS4 and centriolar satellite organization are impaired in cells depleted for CCDC66. Taken together, our findings identify CCDC66 as a targeting factor for centrosome and cilium proteins.


Subject(s)
Centrioles/metabolism , Centrosome/physiology , Cilia/physiology , Eye Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubules/metabolism , Cell Differentiation/genetics , Cell Movement , Centrioles/immunology , Eye Proteins/genetics , HEK293 Cells , Humans , Microtubule-Associated Proteins/genetics , Morphogenesis/genetics , Protein Transport , Proteins/metabolism , RNA, Small Interfering/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...