Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurovirol ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884890

ABSTRACT

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of HIV and cocaine-induced transcriptomes in primary cortical cultures revealed significant overexpression of the macrophage-specific gene aconitate decarboxylase 1 (Acod1). The ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. Itaconate then facilitates cytokine production and activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. However, the immunometabolic function of itaconate was unexplored in HIV and cocaine-exposed microglia. We assessed the potential of 4-octyl-itaconate (4OI), a cell-penetrable ester form of itaconate known for its anti-inflammatory properties. When primary cortical cultures exposed to Tat and cocaine were treated with 4OI, microglial cell number increased and the morphological altercations induced by Tat and cocaine were reversed. Microglial cells also appeared more ramified, resembling the quiescent microglia. 4OI treatment inhibited secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling determined that Nrf2 target genes were significantly activated in Tat and 4OI treated cultures relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development to treat HAND coupled with CUD comorbidities.

2.
Int J Radiat Oncol Biol Phys ; 118(5): 1315-1327, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38104870

ABSTRACT

PURPOSE: Despite aggressive multimodal treatment that typically includes definitive or adjuvant radiation therapy (RT), locoregional recurrence rates approach 50% for patients with locally advanced human papillomavirus (HPV)-negative head and neck squamous cell carcinoma (HNSCC). Thus, more effective therapeutics are needed to improve patient outcomes. We evaluated the radiosensitizing effects of ataxia telangiectasia and RAD3-related (ATR) inhibitor (ATRi) BAY 1895344 in preclinical models of HNSCC. METHODS AND MATERIALS: Murine and human HPV-negative HNSCC cells (MOC2, MOC1, JHU-012) were treated with vehicle or ATRi with or without 4 Gy. Checkpoint kinase 1 phosphorylation and DNA damage (γH2AX) were evaluated by Western blot, and ATRi half-maximal inhibitory concentration was determined by MTT assay for HNSCC cells and immortalized murine oral keratinocytes. In vitro radiosensitization was tested by clonogenic assay. Cell cycle distribution and mitotic catastrophe were evaluated by flow cytometry. Mitotic aberrations were quantified by fluorescent microscopy. Tumor growth delay and survival were assessed in mice bearing MOC2 or JHU-012 transplant tumors treated with vehicle, ATRi, RT (10 Gy × 1 or 8 Gy × 3), or combined ATRi + RT. RESULTS: ATRi caused dose-dependent reduction in checkpoint kinase 1 phosphorylation at 1 hour post-RT (4 Gy) and dose-dependent increase in γH2AX at 18 hours post-RT. Addition of RT to ATRi led to decreased BAY 1895344 half-maximal inhibitory concentration in HNSCC cell lines but not in normal tissue surrogate immortalized murine oral keratinocytes. Clonogenic assays demonstrated radiosensitization in the HNSCC cell lines. ATRi abrogated the RT-induced G2/M checkpoint, leading to mitosis with unrepaired DNA damage and increased mitotic aberrations (multinucleated cells, micronuclei, nuclear buds, nucleoplasmic bridges). ATRi and RT significantly delayed tumor growth in MOC2 and JHU-012 in vivo models, with improved overall survival in the MOC2 model. CONCLUSIONS: These findings demonstrated that BAY 1895344 increased in vitro and in vivo radiosensitivity in HPV-negative HNSCC preclinical models, suggesting therapeutic potential warranting evaluation in clinical trials for patients with locally advanced or recurrent HPV-negative HNSCC.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Morpholines , Papillomavirus Infections , Pyrazoles , Radiation-Sensitizing Agents , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/radiotherapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Checkpoint Kinase 1/metabolism , Neoplasm Recurrence, Local/drug therapy , Radiation-Sensitizing Agents/pharmacology , Carcinoma, Squamous Cell/pathology , Head and Neck Neoplasms/radiotherapy , Head and Neck Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , G2 Phase Cell Cycle Checkpoints/radiation effects , Cell Line, Tumor , Ataxia Telangiectasia Mutated Proteins/metabolism
3.
bioRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808776

ABSTRACT

HIV-associated neurological disorder (HAND) is a serious complication of HIV infection, marked by neurotoxicity induced by viral proteins like Tat. Substance abuse exacerbates neurocognitive impairment in people living with HIV. There is an urgent need for effective therapeutic strategies to combat HAND comorbid with Cocaine Use Disorder (CUD). Our analysis of the HIV and cocaine-induced transcriptomes in primary cortical cultures revealed a significant overexpression of the macrophage-specific gene, aconitate decarboxylase 1 (Acod1), caused by the combined insults of HIV and cocaine. ACOD1 protein converts the tricarboxylic acid intermediate cis-aconitate into itaconate during the activation of inflammation. The itaconate produced facilitates cytokine production and subsequently activates anti-inflammatory transcription factors, shielding macrophages from infection-induced cell death. While the role of itaconate' in limiting inflammation has been studied in peripheral macrophages, its immunometabolic function remains unexplored in HIV and cocaine-exposed microglia. We assessed in this model system the potential of 4-octyl-itaconate (4OI), a cell-penetrable esterified form of itaconate known for its potent anti-inflammatory properties and potential therapeutic applications. We administered 4OI to primary cortical cultures exposed to Tat and cocaine. 4OI treatment increased the number of microglial cells in both untreated and Tat±Cocaine-treated cultures and also reversed the morphological altercations induced by Tat and cocaine. In the presence of 4OI, microglial cells also appeared more ramified, resembling the quiescent microglia. Consistent with these results, 4OI treatment inhibited the secretion of the proinflammatory cytokines IL-1α, IL-1ß, IL-6, and MIP1-α induced by Tat and cocaine. Transcriptome profiling further determined that Nrf2 target genes such as NAD(P)H quinone oxidoreductase 1 (Nqo1), Glutathione S-transferase Pi (Gstp1), and glutamate cysteine ligase catalytic (Gclc), were most significantly activated in Tat-4OI treated cultures, relative to Tat alone. Further, genes associated with cytoskeleton dynamics in inflammatory microglia were downregulated by 4OI treatment. Together, the results strongly suggest 4-octyl-itaconate holds promise as a potential candidate for therapeutic development aimed at addressing HAND coupled with CUD comorbidities.

4.
Tomography ; 8(2): 740-753, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35314638

ABSTRACT

The purpose of this study was to investigate if radiomic analysis based on spectral micro-CT with nanoparticle contrast-enhancement can differentiate tumors based on lymphocyte burden. High mutational load transplant soft tissue sarcomas were initiated in Rag2+/- and Rag2-/- mice to model varying lymphocyte burden. Mice received radiation therapy (20 Gy) to the tumor-bearing hind limb and were injected with a liposomal iodinated contrast agent. Five days later, animals underwent conventional micro-CT imaging using an energy integrating detector (EID) and spectral micro-CT imaging using a photon-counting detector (PCD). Tumor volumes and iodine uptakes were measured. The radiomic features (RF) were grouped into feature-spaces corresponding to EID, PCD, and spectral decomposition images. The RFs were ranked to reduce redundancy and increase relevance based on TL burden. A stratified repeated cross validation strategy was used to assess separation using a logistic regression classifier. Tumor iodine concentration was the only significantly different conventional tumor metric between Rag2+/- (TLs present) and Rag2-/- (TL-deficient) tumors. The RFs further enabled differentiation between Rag2+/- and Rag2-/- tumors. The PCD-derived RFs provided the highest accuracy (0.68) followed by decomposition-derived RFs (0.60) and the EID-derived RFs (0.58). Such non-invasive approaches could aid in tumor stratification for cancer therapy studies.


Subject(s)
Contrast Media , Sarcoma , Animals , Lymphocytes/pathology , Mice , Phantoms, Imaging , Sarcoma/diagnostic imaging , X-Ray Microtomography
5.
Mol Carcinog ; 61(2): 225-238, 2022 02.
Article in English | MEDLINE | ID: mdl-34964992

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) poses significant treatment challenges, with high recurrence rates for locally advanced disease despite aggressive therapy typically involving a combination of surgery, radiation therapy, and/or chemotherapy. HNSCCs commonly exhibit reduced or absent TP53 function due to genomic alterations or human papillomavirus (HPV) infection, leading to dependence on the S- and G2/M checkpoints for cell cycle regulation. Both of these checkpoints are activated by Ataxia Telangiectasia and Rad3-related (ATR), which tends to be overexpressed in HNSCC relative to adjacent normal tissues and represents a potentially promising therapeutic target, particularly in combination with other treatments. ATR is a DNA damage signaling kinase that is activated in response to replication stress and single-stranded DNA breaks, such as those induced by radiation therapy and certain chemotherapies. ATR kinase inhibitors are currently being investigated in several clinical trials as part of the management of locally advanced, recurrent, or metastatic HNSCC, along with other malignancies. In this review article, we summarize the rationale and preclinical data supporting incorporation of ATR inhibition into therapeutic regimens for HNSCC.


Subject(s)
Ataxia Telangiectasia , Head and Neck Neoplasms , Papillomavirus Infections , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Line, Tumor , DNA Damage , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Humans , Protein Kinase Inhibitors/pharmacology , Squamous Cell Carcinoma of Head and Neck/drug therapy
6.
Biochem Pharmacol ; 182: 114280, 2020 12.
Article in English | MEDLINE | ID: mdl-33049245

ABSTRACT

Stress granules (SGs) are non-membranous cytosolic protein-RNA aggregates that process mRNAs through stalled translation initiation in response to cellular stressors and in disease. DEAD-Box RNA helicase 3 (DDX3) is an active target of drug development for the treatment of viral infections, cancers, and neurodegenerative diseases. DDX3 plays a critical role in RNA metabolism, including SGs, but the role of DDX3 enzymatic activity in SG dynamics is not well understood. Here, we address this question by determining the effects of DDX3 inhibition on the dynamics of SG assembly and disassembly. We use two small molecule inhibitors of DDX3, RK33 and 16D, with distinct inhibitory mechanisms that target DDX3's ATPase activity and RNA helicase site, respectively. We find that both DDX3 inhibitors reduce the assembly of SGs, with a more pronounced reduction from RK-33. In contrast, both compounds only marginally affect the disassembly of SGs. RNA-mediated knockdown of DDX3 caused a similar reduction in SG assembly and minimal effect on SG disassembly. Collectively, these results reveal that the enzymatic activity of DDX3 is required for the assembly of SGs and pharmacological inhibition of DDX3 could be relevant for the treatment of SG-dependent pathologies.


Subject(s)
Azepines/pharmacology , Cytoplasmic Granules/metabolism , DEAD-box RNA Helicases/antagonists & inhibitors , DEAD-box RNA Helicases/metabolism , Imidazoles/pharmacology , Cell Line, Tumor , Cytoplasmic Granules/drug effects , Humans , RNA, Small Interfering/antagonists & inhibitors , RNA, Small Interfering/metabolism
7.
J Neuroimmune Pharmacol ; 15(2): 209-223, 2020 06.
Article in English | MEDLINE | ID: mdl-31802418

ABSTRACT

HIV-1 Associated Neurocognitive Disorder (HAND) is a common and clinically detrimental complication of HIV infection. Viral proteins, including Tat, released from infected cells, cause neuronal toxicity. Substance abuse in HIV-infected patients greatly influences the severity of neuronal damage. To repurpose small molecule inhibitors for anti-HAND therapy, we employed MOLIERE, an AI-based literature mining system that we developed. All human genes were analyzed and prioritized by MOLIERE to find previously unknown targets connected to HAND. From the identified high priority genes, we narrowed the list to those with known small molecule ligands developed for other applications and lacking systemic toxicity in animal models. To validate the AI-based process, the selective small molecule inhibitor of DDX3 helicase activity, RK-33, was chosen and tested for neuroprotective activity. The compound, previously developed for cancer treatment, was tested for the prevention of combined neurotoxicity of HIV Tat and cocaine. Rodent cortical cultures were treated with 6 or 60 ng/ml of HIV Tat and 10 or 25 µM of cocaine, which caused substantial toxicity. RK-33 at doses as low as 1 µM greatly reduced the neurotoxicity of Tat and cocaine. Transcriptome analysis showed that most Tat-activated transcripts are microglia-specific genes and that RK-33 blocks their activation. Treatment with RK-33 inhibits the Tat and cocaine-dependent increase in the number and size of microglia and the proinflammatory cytokines IL-6, TNF-α, MCP-1/CCL2, MIP-2, IL-1α and IL-1ß. These findings reveal that inhibition of DDX3 may have the potential to treat not only HAND but other neurodegenerative diseases. Graphical Abstract RK-33, selective inhibitor of Dead Box RNA helicase 3 (DDX3) protects neurons from combined Tat and cocaine neurotoxicity by inhibition of microglia activation and production of proinflammatory cytokines.


Subject(s)
Azepines/pharmacology , Cocaine/toxicity , DEAD-box RNA Helicases/antagonists & inhibitors , Imidazoles/pharmacology , Microglia/drug effects , tat Gene Products, Human Immunodeficiency Virus/toxicity , AIDS Dementia Complex/drug therapy , AIDS Dementia Complex/enzymology , Animals , Azepines/therapeutic use , Cells, Cultured , DEAD-box RNA Helicases/metabolism , Dopamine Uptake Inhibitors/toxicity , Dose-Response Relationship, Drug , Female , Imidazoles/therapeutic use , Male , Microglia/enzymology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...