Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
2.
Malar J ; 21(1): 319, 2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36336700

ABSTRACT

BACKGROUND: Detection of malaria parasitaemia in samples that are negative by rapid diagnostic tests (RDTs) requires resource-intensive molecular tools. While pooled testing using a two-step strategy provides a cost-saving alternative to the gold standard of individual sample testing, statistical adjustments are needed to improve accuracy of prevalence estimates for a single step pooled testing strategy. METHODS: A random sample of 4670 malaria RDT negative dried blood spot samples were selected from a mass testing and treatment trial in Asembo, Gem, and Karemo, western Kenya. Samples were tested for malaria individually and in pools of five, 934 pools, by one-step quantitative polymerase chain reaction (qPCR). Maximum likelihood approaches were used to estimate subpatent parasitaemia (RDT-negative, qPCR-positive) prevalence by pooling, assuming poolwise sensitivity and specificity was either 100% (strategy A) or imperfect (strategy B). To improve and illustrate the practicality of this estimation approach, a validation study was constructed from pools allocated at random into main (734 pools) and validation (200 pools) subsets. Prevalence was estimated using strategies A and B and an inverse-variance weighted estimator and estimates were weighted to account for differential sampling rates by area. RESULTS: The prevalence of subpatent parasitaemia was 14.5% (95% CI 13.6-15.3%) by individual qPCR, 9.5% (95% CI (8.5-10.5%) by strategy A, and 13.9% (95% CI 12.6-15.2%) by strategy B. In the validation study, the prevalence by individual qPCR was 13.5% (95% CI 12.4-14.7%) in the main subset, 8.9% (95% CI 7.9-9.9%) by strategy A, 11.4% (95% CI 9.9-12.9%) by strategy B, and 12.8% (95% CI 11.2-14.3%) using inverse-variance weighted estimator from poolwise validation. Pooling, including a 20% validation subset, reduced costs by 52% compared to individual testing. CONCLUSIONS: Compared to individual testing, a one-step pooled testing strategy with an internal validation subset can provide accurate prevalence estimates of PCR-positivity among RDT-negatives at a lower cost.


Subject(s)
Malaria, Falciparum , Malaria , Humans , Diagnostic Tests, Routine , Kenya/epidemiology , Likelihood Functions , Malaria/diagnosis , Malaria/epidemiology , Malaria, Falciparum/epidemiology , Molecular Diagnostic Techniques , Parasitemia/diagnosis , Parasitemia/epidemiology , Prevalence , Sensitivity and Specificity , Clinical Trials as Topic
3.
Trials ; 23(1): 260, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35382858

ABSTRACT

BACKGROUND: Spatial repellents are widely used for prevention of mosquito bites and evidence is building on their public health value, but their efficacy against malaria incidence has never been evaluated in Africa. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a spatial repellent incorporating transfluthrin, was developed for implementation in Busia County, western Kenya where long-lasting insecticidal net coverage is high and baseline malaria transmission is moderate to high year-round. METHODS: This trial is designed as a cluster-randomized, placebo-controlled, double-blinded clinical trial. Sixty clusters will be randomly assigned in a 1:1 ratio to receive spatial repellent or placebo. A total of 6120 children aged ≥6 months to 10 years of age will be randomly selected from the study clusters, enrolled into an active cohort (baseline, cohort 1, and cohort 2), and sampled monthly to determine time to first infection by smear microscopy. Each cohort following the implementation of the intervention will be split into two groups, one to estimate direct effect of the spatial repellent and the other to estimate degree of diversion of mosquitoes and malaria transmission to unprotected persons. Malaria incidence in each cohort will be estimated and compared (primary indicator) to determine benefit of using a spatial repellent in a high, year-round malaria transmission setting. Mosquitoes will be collected monthly using CDC light traps to determine if there are entomological correlates of spatial repellent efficacy that may be useful for the evaluation of new spatial repellents. Quarterly human landing catches will assess behavioral effects of the intervention. DISCUSSION: Findings will serve as the first cluster-randomized controlled trial powered to detect spatial repellent efficacy to reduce malaria in sub-Saharan Africa where transmission rates are high, insecticide-treated nets are widely deployed, and mosquitoes are resistant to insecticides. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of spatial repellents in malaria control programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT04766879 . Registered February 23, 2021.


Subject(s)
Insect Repellents , Insecticide-Treated Bednets , Insecticides , Malaria , Animals , Child , Humans , Incidence , Insect Repellents/pharmacology , Insecticides/pharmacology , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Randomized Controlled Trials as Topic
5.
Clin Infect Dis ; 72(11): 1927-1935, 2021 06 01.
Article in English | MEDLINE | ID: mdl-32324850

ABSTRACT

BACKGROUND: Global gains toward malaria elimination have been heterogeneous and have recently stalled. Interventions targeting afebrile malaria infections may be needed to address residual transmission. We studied the efficacy of repeated rounds of community-based mass testing and treatment (MTaT) on malaria infection prevalence in western Kenya. METHODS: Twenty clusters were randomly assigned to 3 rounds of MTaT per year for 2 years or control (standard of care for testing and treatment at public health facilities along with government-sponsored mass long-lasting insecticidal net [LLIN] distributions). During rounds, community health volunteers visited all households in intervention clusters and tested all consenting individuals with a rapid diagnostic test. Those positive were treated with dihydroartemisinin-piperaquine. Cross-sectional community infection prevalence surveys were performed in both study arms at baseline and each year after 3 rounds of MTaT. The primary outcome was the effect size of MTaT on parasite prevalence by microscopy between arms by year, adjusted for age, reported LLIN use, enhanced vegetative index, and socioeconomic status. RESULTS: Demographic and behavioral characteristics, including LLIN usage, were similar between arms at each survey. MTaT coverage across the 3 annual rounds ranged between 75.0% and 77.5% in year 1, and between 81.9% and 94.3% in year 2. The adjusted effect size of MTaT on the prevalence of parasitemia between arms was 0.93 (95% confidence interval [CI], .79-1.08) and 0.92 (95% CI, .76-1.10) after year 1 and year 2, respectively. CONCLUSIONS: MTaT performed 3 times per year over 2 years did not reduce malaria parasite prevalence in this high-transmission area. CLINICAL TRIALS REGISTRATION: NCT02987270.


Subject(s)
Malaria , Cross-Sectional Studies , Humans , Kenya/epidemiology , Malaria/diagnosis , Malaria/drug therapy , Malaria/epidemiology , Parasitemia/drug therapy , Parasitemia/epidemiology , Prevalence
6.
Am J Trop Med Hyg ; 103(1): 369-377, 2020 07.
Article in English | MEDLINE | ID: mdl-32342846

ABSTRACT

Progress with malaria control in western Kenya has stagnated since 2007. Additional interventions to reduce the high burden of malaria in this region are urgently needed. We conducted a two-arm, community-based, cluster-randomized, controlled trial of active case detection and treatment of malaria infections in all residents mass testing and treatment (MTaT) of 10 village clusters (intervention clusters) for two consecutive years to measure differences in the incidence of clinical malaria disease and malaria infections compared with 20 control clusters where MTaT was not implemented. All residents of intervention clusters, irrespective of history of fever or other malaria-related symptoms, were tested three times per year before the peak malaria season using malaria rapid diagnostic tests. All positive cases were treated with dihydroartemisinin-piperaquine. The incidence of clinical malaria was measured through passive surveillance, whereas the cumulative incidence of malaria infection was measured using active surveillance in a cohort comprising randomly selected residents. The incidence of clinical malaria was 0.19 cases/person-year (p-y, 95% CI: 0.13-0.28) in the intervention arm and 0.24 cases/p-y (95% CI: 0.15-0.39) in the control arm (incidence rate ratio [IRR] 0.79, 95% CI: 0.61-1.02). The cumulative incidence of malaria infections was similar between the intervention (2.08 infections/p-y, 95% CI: 1.93-2.26) and control arms (2.19 infections/p-y, 95% CI: 2.02-2.37) with a crude IRR of 0.95 (95% CI: 0.87-1.04). Six rounds of MTaT over 2 years did not have a significant impact on the incidence of clinical malaria or the cumulative incidence of malaria infection in this area of high malaria transmission.


Subject(s)
Antimalarials/therapeutic use , Malaria, Falciparum/diagnosis , Adolescent , Artemisinins/therapeutic use , Child , Child, Preschool , Female , Humans , Incidence , Kenya/epidemiology , Malaria, Falciparum/drug therapy , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Male , Mass Screening/methods , Quinolines/therapeutic use
7.
Malar J ; 18(1): 255, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31357997

ABSTRACT

BACKGROUND: Malaria transmission is high in western Kenya and the asymptomatic infected population plays a significant role in driving the transmission. Mathematical modelling and simulation programs suggest that interventions targeting asymptomatic infections through mass testing and treatment (MTaT) or mass drug administration (MDA) have the potential to reduce malaria transmission when combined with existing interventions. OBJECTIVE: This paper describes the study site, capacity development efforts required, and lessons learned for implementing a multi-year community-based cluster-randomized controlled trial to evaluate the impact of MTaT for malaria transmission reduction in an area of high transmission in western Kenya. METHODS: The study partnered with Kenya's Ministry of Health (MOH) and other organizations on community sensitization and engagement to mobilize, train and deploy community health volunteers (CHVs) to deliver MTaT in the community. Within the health facilities, the study availed staff, medical and laboratory supplies and strengthened health information management system to monitor progress and evaluate impact of intervention. RESULTS: More than 80 Kenya MOH CHVs, 13 clinical officers, field workers, data and logistical staff were trained to carry out MTaT three times a year for 2 years in a population of approximately 90,000 individuals. A supply chain management was adapted to meet daily demands for large volumes of commodities despite the limitation of few MOH facilities having ideal storage conditions. Modern technology was adapted more to meet the needs of the high daily volume of collected data. CONCLUSIONS: In resource-constrained settings, large interventions require capacity building and logistical planning. This study found that investing in relationships with the communities, local governments, and other partners, and identifying and equipping the appropriate staff with the skills and technology to perform tasks are important factors for success in delivering an intervention like MTaT.


Subject(s)
Antimalarials/therapeutic use , Community Participation/methods , Malaria/prevention & control , Mass Drug Administration/methods , Mass Screening/methods , Community Health Workers/statistics & numerical data , Kenya , Volunteers/statistics & numerical data
8.
Malar J ; 16(1): 240, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28592250

ABSTRACT

Most human Plasmodium infections in western Kenya are asymptomatic and are believed to contribute importantly to malaria transmission. Elimination of asymptomatic infections requires active treatment approaches, such as mass testing and treatment (MTaT) or mass drug administration (MDA), as infected persons do not seek care for their infection. Evaluations of community-based approaches that are designed to reduce malaria transmission require careful attention to study design to ensure that important effects can be measured accurately. This manuscript describes the study design and methodology of a cluster-randomized controlled trial to evaluate a MTaT approach for malaria transmission reduction in an area of high malaria transmission. Ten health facilities in western Kenya were purposively selected for inclusion. The communities within 3 km of each health facility were divided into three clusters of approximately equal population size. Two clusters around each health facility were randomly assigned to the control arm, and one to the intervention arm. Three times per year for 2 years, after the long and short rains, and again before the long rains, teams of community health volunteers visited every household within the intervention arm, tested all consenting individuals with malaria rapid diagnostic tests, and treated all positive individuals with an effective anti-malarial. The effect of mass testing and treatment on malaria transmission was measured through population-based longitudinal cohorts, outpatient visits for clinical malaria, periodic population-based cross-sectional surveys, and entomological indices.


Subject(s)
Antimalarials/therapeutic use , Malaria/diagnosis , Malaria/drug therapy , Research Design , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cluster Analysis , Cross-Sectional Studies , Diagnostic Tests, Routine , Female , Humans , Infant , Kenya , Longitudinal Studies , Malaria/prevention & control , Male , Mass Screening , Middle Aged , Randomized Controlled Trials as Topic , Young Adult
9.
Sci Rep ; 7: 45849, 2017 04 12.
Article in English | MEDLINE | ID: mdl-28401903

ABSTRACT

The spatial heterogeneity of malaria suggests that interventions may be targeted for maximum impact. It is unclear to what extent different metrics lead to consistent delineation of hotspot boundaries. Using data from a large community-based malaria survey in the western Kenyan highlands, we assessed the agreement between a model-based geostatistical (MBG) approach to detect hotspots using Plasmodium falciparum parasite prevalence and serological evidence for exposure. Malaria transmission was widespread and highly heterogeneous with one third of the total population living in hotspots regardless of metric tested. Moderate agreement (Kappa = 0.424) was observed between hotspots defined based on parasite prevalence by polymerase chain reaction (PCR)- and the prevalence of antibodies to two P. falciparum antigens (MSP-1, AMA-1). While numerous biologically plausible hotspots were identified, their detection strongly relied on the proportion of the population sampled. When only 3% of the population was sampled, no PCR derived hotspots were reliably detected and at least 21% of the population was needed for reliable results. Similar results were observed for hotspots of seroprevalence. Hotspot boundaries are driven by the malaria diagnostic and sample size used to inform the model. These findings warn against the simplistic use of spatial analysis on available data to target malaria interventions in areas where hotspot boundaries are uncertain.


Subject(s)
Antibodies, Protozoan/genetics , Malaria, Falciparum/epidemiology , Merozoite Surface Protein 1/genetics , Plasmodium falciparum/genetics , Adolescent , Child , Female , Humans , Kenya , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Male , Plasmodium falciparum/pathogenicity , Sample Size , Seroepidemiologic Studies , Spatial Analysis
10.
Malar J ; 15: 307, 2016 06 04.
Article in English | MEDLINE | ID: mdl-27259286

ABSTRACT

BACKGROUND: The East African highlands are fringe regions between stable and unstable malaria transmission. What factors contribute to the heterogeneity of malaria exposure on different spatial scales within larger foci has not been extensively studied. In a comprehensive, community-based cross-sectional survey an attempt was made to identify factors that drive the macro- and micro epidemiology of malaria in a fringe region using parasitological and serological outcomes. METHODS: A large cross-sectional survey including 17,503 individuals was conducted across all age groups in a 100 km(2) area in the Western Kenyan highlands of Rachuonyo South district. Households were geo-located and prevalence of malaria parasites and malaria-specific antibodies were determined by PCR and ELISA. Household and individual risk-factors were recorded. Geographical characteristics of the study area were digitally derived using high-resolution satellite images. RESULTS: Malaria antibody prevalence strongly related to altitude (1350-1600 m, p < 0.001). A strong negative association with increasing altitude and PCR parasite prevalence was found. Parasite carriage was detected at all altitudes and in all age groups; 93.2 % (2481/2663) of malaria infections were apparently asymptomatic. Malaria parasite prevalence was associated with age, bed net use, house construction features, altitude and topographical wetness index. Antibody prevalence was associated with all these factors and distance to the nearest water body. CONCLUSION: Altitude was a major driver of malaria transmission in this study area, even across narrow altitude bands. The large proportion of asymptomatic parasite carriers at all altitudes and the age-dependent acquisition of malaria antibodies indicate stable malaria transmission; the strong correlation between current parasite carriage and serological markers of malaria exposure indicate temporal stability of spatially heterogeneous transmission.


Subject(s)
Malaria/epidemiology , Topography, Medical , Adolescent , Adult , Aged , Aged, 80 and over , Altitude , Antibodies, Protozoan/blood , Asymptomatic Diseases/epidemiology , Child , Child, Preschool , Cross-Sectional Studies , DNA, Protozoan/genetics , Disease Transmission, Infectious , Enzyme-Linked Immunosorbent Assay , Family Characteristics , Female , Humans , Infant , Infant, Newborn , Kenya/epidemiology , Malaria/transmission , Male , Middle Aged , Plasmodium/genetics , Plasmodium/immunology , Plasmodium/isolation & purification , Polymerase Chain Reaction , Prevalence , Risk Factors , Spatial Analysis , Young Adult
11.
PLoS Med ; 13(4): e1001993, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27071072

ABSTRACT

BACKGROUND: Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities. METHODS AND FINDINGS: Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June-6 July 2012) and 16 wk (21 August-10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI -1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons. CONCLUSIONS: Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear. TRIAL REGISTRATION: ClinicalTrials.gov NCT01575613.


Subject(s)
Culicidae/parasitology , Insect Vectors/parasitology , Insecticide-Treated Bednets , Insecticides , Malaria/prevention & control , Malaria/transmission , Mosquito Control/methods , Plasmodium , Rural Health Services , Adolescent , Adult , Animals , Antibodies, Protozoan/blood , Child , Child, Preschool , Culicidae/growth & development , DNA, Protozoan/blood , DNA, Protozoan/genetics , Disease Reservoirs , Female , Host-Parasite Interactions , Humans , Incidence , Insect Vectors/growth & development , Kenya/epidemiology , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Male , Plasmodium/genetics , Plasmodium/growth & development , Plasmodium/immunology , Polymerase Chain Reaction , Population Density , Prevalence , Seroepidemiologic Studies , Time Factors , Young Adult
12.
J Infect Dis ; 212(11): 1768-77, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26019285

ABSTRACT

BACKGROUND: Mass screening and treatment currently fails to identify a considerable fraction of low parasite density infections, while mass treatment exposes many uninfected individuals to antimalarial drugs. Here we test a hybrid approach to screen a sentinel population to identify clusters of subpatent infections in the Kenya highlands with low, heterogeneous malaria transmission. METHODS: Two thousand eighty-two inhabitants were screened for parasitemia by nested polymerase chain reaction (nPCR). Children aged ≤ 15 years and febrile adults were also tested for malaria by rapid diagnostic test (RDT) and served as sentinel members to identify subpatent infections within the household. All parasitemic individuals were assessed for multiplicity of infections by nPCR and gametocyte carriage by nucleic acid sequence-based amplification. RESULTS: Households with RDT-positive individuals in the sentinel population were more likely to have nPCR-positive individuals (odds ratio: 1.71, 95% confidence interval, 1.60-1.84). The sentinel population identified 64.5% (locality range: 31.6%-81.2%) of nPCR-positive households and 77.3% (locality range: 24.2%-91.0%) of nPCR-positive individuals. The sensitivity of the sentinel screening approach was positively associated with transmission intensity (P = .037). CONCLUSIONS: In this low endemic area, a focal screening approach with RDTs prior to the high transmission season was able to identify the majority of the subpatent parasite reservoirs.


Subject(s)
Asymptomatic Infections/epidemiology , Malaria/epidemiology , Mass Screening , Parasitemia/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cross-Sectional Studies , Family Characteristics , Female , Humans , Infant , Kenya/epidemiology , Malaria/diagnosis , Malaria/transmission , Male , Middle Aged , Parasitemia/diagnosis , Parasitemia/transmission , Young Adult
13.
PLoS One ; 9(10): e107700, 2014.
Article in English | MEDLINE | ID: mdl-25290939

ABSTRACT

INTRODUCTION: Tools that allow for in silico optimization of available malaria control strategies can assist the decision-making process for prioritizing interventions. The OpenMalaria stochastic simulation modeling platform can be applied to simulate the impact of interventions singly and in combination as implemented in Rachuonyo South District, western Kenya, to support this goal. METHODS: Combinations of malaria interventions were simulated using a previously-published, validated model of malaria epidemiology and control in the study area. An economic model of the costs of case management and malaria control interventions in Kenya was applied to simulation results and cost-effectiveness of each intervention combination compared to the corresponding simulated outputs of a scenario without interventions. Uncertainty was evaluated by varying health system and intervention delivery parameters. RESULTS: The intervention strategy with the greatest simulated health impact employed long lasting insecticide treated net (LLIN) use by 80% of the population, 90% of households covered by indoor residual spraying (IRS) with deployment starting in April, and intermittent screen and treat (IST) of school children using Artemether lumefantrine (AL) with 80% coverage twice per term. However, the current malaria control strategy in the study area including LLIN use of 56% and IRS coverage of 70% was the most cost effective at reducing disability-adjusted life years (DALYs) over a five year period. CONCLUSIONS: All the simulated intervention combinations can be considered cost effective in the context of available resources for health in Kenya. Increasing coverage of vector control interventions has a larger simulated impact compared to adding IST to the current implementation strategy, suggesting that transmission in the study area is not at a level to warrant replacing vector control to a school-based screen and treat program. These results have the potential to assist malaria control program managers in the study area in adding new or changing implementation of current interventions.


Subject(s)
Cost-Benefit Analysis , Malaria/prevention & control , Models, Theoretical , Health Care Costs , Humans , Kenya/epidemiology , Malaria/epidemiology , Models, Statistical , Prevalence
14.
PLoS One ; 8(10): e77641, 2013.
Article in English | MEDLINE | ID: mdl-24143250

ABSTRACT

BACKGROUND: School surveys provide an operational approach to assess malaria transmission through parasite prevalence. There is limited evidence on the comparability of prevalence estimates obtained from school and community surveys carried out at the same locality. METHODS: Concurrent school and community cross-sectional surveys were conducted in 46 school/community clusters in the western Kenyan highlands and households of school children were geolocated. Malaria was assessed by rapid diagnostic test (RDT) and combined seroprevalence of antibodies to bloodstage Plasmodium falciparum antigens. RESULTS: RDT prevalence in school and community populations was 25.7% (95% CI: 24.4-26.8) and 15.5% (95% CI: 14.4-16.7), respectively. Seroprevalence in the school and community populations was 51.9% (95% CI: 50.5-53.3) and 51.5% (95% CI: 49.5-52.9), respectively. RDT prevalence in schools could differentiate between low (<7%, 95% CI: 0-19%) and high (>39%, 95% CI: 25-49%) transmission areas in the community and, after a simple adjustment, were concordant with the community estimates. CONCLUSIONS: Estimates of malaria prevalence from school surveys were consistently higher than those from community surveys and were strongly correlated. School-based estimates can be used as a reliable indicator of malaria transmission intensity in the wider community and may provide a basis for identifying priority areas for malaria control.


Subject(s)
Data Collection , Geography , Malaria/transmission , Schools/statistics & numerical data , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Kenya/epidemiology , Malaria/epidemiology , Male , Middle Aged , Prevalence , Residence Characteristics/statistics & numerical data , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...