Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Biol ; 509: 1-10, 2024 May.
Article in English | MEDLINE | ID: mdl-38311164

ABSTRACT

Saliva is vital to oral health, fulfilling multiple functions in the oral cavity. Three pairs of major salivary glands and hundreds of minor salivary glands contribute to saliva production. The secretory acinar cells within these glands include two distinct populations. Serous acinar cells secrete a watery saliva containing enzymes, while mucous acinar cells secrete a more viscous fluid containing highly glycosylated mucins. Despite their shared developmental origins, the parotid gland (PG) is comprised of only serous acinar cells, while the sublingual gland (SLG) contains predominantly mucous acinar cells. The instructive signals that govern the identity of serous versus mucous acinar cell phenotypes are not yet known. The homeobox transcription factor Nkx2.3 is uniquely expressed in the SLG. Disruption of the Nkx2.3 gene was reported to delay the maturation of SLG mucous acinar cells. To examine whether Nkx2.3 plays a role in directing the mucous cell phenotype, we analyzed SLG from Nkx2.3-/- mice using RNAseq, immunostaining and proteomic analysis of saliva. Our results indicate that Nkx2.3, most likely in concert with other transcription factors uniquely expressed in the SLG, is a key regulator of the molecular program that specifies the identity of mucous acinar cells.


Subject(s)
Proteomics , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Salivary Glands , Sublingual Gland , Parotid Gland , Homeodomain Proteins/genetics
2.
FEBS Open Bio ; 9(5): 947-958, 2019 05.
Article in English | MEDLINE | ID: mdl-30998297

ABSTRACT

Transcriptional profiling identified 933 sexually dimorphic genes out of the 14 371 protein-coding genes expressed in the three major murine salivary glands: parotid, sublingual, and submandibular. Most (89%) sex-specific genes were enriched in a single gland, while only 0.5% of the sexually dimorphic genes were enriched in all glands. The sublingual gland displayed a strong male sex bias (94% of sex-enriched genes), while a sex preference was not obvious in the parotid or submandibular glands. A subset of transcription factor genes was correlated with the expression of gland-specific, sex-enriched genes. Higher expression of Cftr chloride and Scnn1 sodium channels in the male submandibular correlated with greater NaCl reabsorption. In conclusion, adult salivary glands display sex- and gland-specific differences in gene expression that reflect their unique functional properties.


Subject(s)
Parotid Gland/metabolism , Sublingual Gland/metabolism , Submandibular Gland/metabolism , Transcriptome , Animals , Female , Male , Mice , Sex Characteristics
3.
Physiol Genomics ; 50(4): 263-271, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29373073

ABSTRACT

RNA-Seq was used to better understand the molecular nature of the biological differences among the three major exocrine salivary glands in mammals. Transcriptional profiling found that the adult murine parotid, submandibular, and sublingual salivary glands express greater than 14,300 protein-coding genes, and nearly 2,000 of these genes were differentially expressed. Principle component analysis of the differentially expressed genes revealed three distinct clusters according to gland type. The three salivary gland transcriptomes were dominated by a relatively few number of highly expressed genes (6.3%) that accounted for more than 90% of transcriptional output. Of the 912 transcription factors expressed in the major salivary glands, greater than 90% of them were detected in all three glands, while expression for ~2% of them was enriched in an individual gland. Expression of these unique transcription factors correlated with sublingual and parotid specific subsets of both highly expressed and differentially expressed genes. Gene ontology analyses revealed that the highly expressed genes common to all glands were associated with global functions, while many of the genes expressed in a single gland play a major role in the function of that gland. In summary, transcriptional profiling of the three murine major salivary glands identified a limited number of highly expressed genes, differentially expressed genes, and unique transcription factors that represent the transcriptional signatures underlying gland-specific biological properties.


Subject(s)
Salivary Glands/metabolism , Transcriptome/genetics , Animals , Mice , Parotid Gland/metabolism , Sublingual Gland/metabolism
4.
J Proteome Res ; 13(12): 5965-72, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25285581

ABSTRACT

We provide evidence at the molecular level that ubiquitinated proteins are present in exosomes shed by myeloid-derived suppressor cells (MDSC). Ubiquitin was selected as a post-translational modification of interest because it is known to play a determinant role in the endosomal trafficking that culminates in exosome release. Enrichment was achieved by two immunoprecipitations, first at the protein level and subsequently at the peptide level. Fifty ubiquitinated proteins were identified by tandem mass spectrometry filtering at a 5% spectral false discovery rate and using the conservative requirement that glycinylglycine-modified lysine residues were observed in tryptic peptides. Thirty five of these proteins have not previously been reported to be ubiquitinated. The ubiquitinated cohort spans a range of protein sizes and favors basic pI values and hydrophobicity. Five proteins associated with endosomal trafficking were identified as ubiquitinated, along with pro-inflammatory high mobility group protein B1 and proinflammatory histones.


Subject(s)
Exosomes/metabolism , Myeloid Progenitor Cells/metabolism , Ubiquitinated Proteins/metabolism , Amino Acid Sequence , Animals , Cell Line, Tumor , Mice, Inbred BALB C , Molecular Sequence Data , Neoplasm Transplantation , Tandem Mass Spectrometry , Ubiquitinated Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...