Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 51(2): 810-818, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27936648

ABSTRACT

Waste water treatment plants (WWTPs) are receptors for the cumulative loading of microplastics (MPs) derived from industry, landfill, domestic wastewater and stormwater. The partitioning of MPs through the settlement processes of wastewater treatment results in the majority becoming entrained in the sewage sludge. This study characterized MPs in sludge samples from seven WWTPs in Ireland which use anaerobic digestion (AD), thermal drying (TD), or lime stabilization (LS) treatment processes. Abundances ranged from 4196 to 15 385 particles kg-1 (dry weight). Results of a general linear mixed model (GLMM) showed significantly higher abundances of MPs in smaller size classes in the LS samples, suggesting that the treatment process of LS shears MP particles. In contrast, lower abundances of MPs found in the AD samples suggests that this process may reduce MP abundances. Surface morphologies examined using scanning electron microscopy (SEM) showed characteristics of melting and blistering of TD MPs and shredding and flaking of LS MPs. This study highlights the potential for sewage sludge treatment processes to affect the risk of MP pollution prior to land spreading and may have implications for legislation governing the application of biosolids to agricultural land.


Subject(s)
Sewage , Wastewater , Agriculture , Conservation of Natural Resources , Ireland , Waste Disposal, Fluid
2.
J Exp Zool ; 284(5): 541-8, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10469992

ABSTRACT

Tissues from a range of fish were examined for the presence of parathyroid hormone-related protein (PTHrP) to investigate PTHrP protein distribution and PTHrP gene expression in jawless fish, cartilaginous fish, and bony fish. Immunoreactive PTHrP was localized using antisera to N-terminal and mid-molecule regions of human PTHrP and PTHrP gene expression examined using a digoxigenin labeled riboprobe to a conserved region of the mammalian PTHrP gene. In all of the fish studied, PTHrP protein and messenger RNA (mRNA) were localized to the skin, kidney, and skeletal muscle, following the pattern seen in higher vertebrates. Additional sites of localization for both protein and mRNA included gill, nerve cord, and pituitary, as well as developing dermal denticles and rectal gland in the elasmobranch species. The sites of PTHrP distribution indicate that PTHrP may have roles in ionoregulation as well as growth and differentiation in fish, as has been suggested in higher vertebrates. The results imply that the distribution of PTHrP is widespread in fish and that there is homology between the PTHrP molecules found in humans and fish. The conservation of localization and possible similarity of the PTHrP molecules between tetrapods and fish suggests that PTHrP has a number of fundamental roles in vertebrates. J. Exp. Zool. 284:541-548, 1999.


Subject(s)
Fishes/metabolism , Parathyroid Hormone/metabolism , Proteins/metabolism , Animals , Gene Expression , Humans , Immunoenzyme Techniques , In Situ Hybridization , Parathyroid Hormone/genetics , Parathyroid Hormone-Related Protein , Proteins/genetics , RNA, Messenger/metabolism , Species Specificity , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL