Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncol Lett ; 15(6): 9251-9256, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29805654

ABSTRACT

The aberrant activation of receptor tyrosine kinases (RTKs) is associated with tumor initiation in various types of human cancer, including non-small cell lung cancers (NSCLCs). Tyrosine kinase-independent non-canonical RTK regulation has also been investigated in tumor malignant alterations, including cellular stress responses. It was recently reported that the phosphorylation of epidermal growth factor receptor (EGFR) at C-terminal Ser-1015 serves a critical role in growth factor and cytokine signaling. In the present study, the role of non-canonical EGFR regulation has been investigated in NSCLC cells treated with cisplatin, a common chemotherapeutic agent. Cisplatin-induced p38 activation triggered the Ser-1015 phosphorylation of EGFR, with similar kinetics to previously reported Ser-1047 phosphorylation, in a tyrosine kinase-independent manner. In addition, phosphorylation around Ser-1015 triggered endocytosis of a dimer deficient mutant of EGFR. The non-canonical endocytosis of EGFR monomers was primarily controlled by the region around Ser-1015 only; however, Ser-1047 on internalized EGFR was equally phosphorylated. The results of the present study provide mechanistic evidence for the cisplatin-induced non-canonical regulation of EGFR.

2.
J Biol Chem ; 293(7): 2288-2301, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29255092

ABSTRACT

The canonical description of transmembrane receptor function is initial binding of ligand, followed by initiation of intracellular signaling and then internalization en route to degradation or recycling to the cell surface. It is known that low concentrations of extracellular ligand lead to a higher proportion of receptor that is recycled and that non-canonical mechanisms of receptor activation, including phosphorylation by the kinase p38, can induce internalization and recycling. However, no connections have been made between these pathways; i.e. it has yet to be established what happens to unbound receptors following stimulation with ligand. Here we demonstrate that a minimal level of activation of epidermal growth factor receptor (EGFR) tyrosine kinase by low levels of ligand is sufficient to fully activate downstream mitogen-activated protein kinase (MAPK) pathways, with most of the remaining unbound EGFR molecules being efficiently phosphorylated at intracellular serine/threonine residues by activated mitogen-activated protein kinase. This non-canonical, p38-mediated phosphorylation of the C-tail of EGFR, near Ser-1015, induces the clathrin-mediated endocytosis of the unliganded EGFR monomers, which occurs slightly later than the canonical endocytosis of ligand-bound EGFR dimers via tyrosine autophosphorylation. EGFR endocytosed via the non-canonical pathway is largely recycled back to the plasma membrane as functional receptors, whereas p38-independent populations are mainly sorted for lysosomal degradation. Moreover, ligand concentrations balance these endocytic trafficking pathways. These results demonstrate that ligand-activated EGFR signaling controls unliganded receptors through feedback phosphorylation, identifying a dual-mode regulation of the endocytic trafficking dynamics of EGFR.


Subject(s)
Epidermal Growth Factor , ErbB Receptors , p38 Mitogen-Activated Protein Kinases , Amino Acid Motifs , Dimerization , Endocytosis , Enzyme Activation , Epidermal Growth Factor/metabolism , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Ligands , Lysosomes/enzymology , Lysosomes/genetics , Phosphorylation , Protein Binding , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL