Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 194
Filter
1.
J Appl Toxicol ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563354

ABSTRACT

Although measurements of blood triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) levels in rodent toxicity studies are useful for detection of antithyroid substances, assays for these measurements are expensive and can show high variability depending on blood sampling conditions. To develop more efficient methods for detecting thyroid disruptors, we compared histopathological and immunohistochemical findings in the thyroid and pituitary glands with blood hormone levels. Six-week-old male and female Sprague-Dawley rats (five rats per group) were treated with multiple doses of the thyroid peroxidase inhibitors propylthiouracil (PTU) and methimazole by gavage for 28 days. Significant decreases in serum T3 and T4 and increases in TSH were observed in the ≥1 mg/kg PTU and ≥3 mg/kg methimazole groups. An increase in TSH was also detected in male rats in the 0.3 mg/kg PTU group. Histopathological and immunohistochemical analyses revealed that follicular cell hypertrophy and decreased T4 and T3 expressions in the thyroid gland were induced at doses lower than doses at which significant changes in serum hormone levels were observed, suggesting that these findings may be more sensitive than blood hormone levels. Significant increases in thyroid weights, Ki67-positive thyroid follicular cell counts, and TSH-positive areas in the pituitary gland were detected at doses comparable with those at which changes in serum T4 and TSH levels were observed, indicating that these parameters may also be useful for evaluation of antithyroid effects. Combining these parameters may be effective for detecting antithyroid substances without relying on hormone measurements.

2.
J Toxicol Pathol ; 37(2): 55-67, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38584969

ABSTRACT

Renal tubular epithelial cell (TEC) injury is the most common cause of drug-induced kidney injury (DIKI). Although TEC regeneration facilitates renal function and structural recovery following DIKI, maladaptive repair of TECs leads to irreversible fibrosis, resulting in chronic kidney disease (CKD). CD44 is specifically expressed in TECs during maladaptive repair in several types of rat CKD models. In this study, we investigated CD44 expression and its role in renal fibrogenesis in a cyclosporine (CyA) rat model of CKD. Seven-week-old male Sprague-Dawley rats fed a low-salt diet were subcutaneously administered CyA (0, 15, or 30 mg/kg) for 28 days. CD44 was expressed in atrophic, dilated, and hypertrophic TECs in the fibrotic lesions of the CyA groups. These TECs were collected by laser microdissection and evaluated by microarray analysis. Gene ontology analysis suggested that these TECs have a mesenchymal phenotype, and pathway analysis identified CD44 as an upstream regulator of fibrosis-related genes, including fibronectin 1 (Fn1). Immunohistochemistry revealed that epithelial and mesenchymal markers of TECs of fibrotic lesions were downregulated and upregulated, respectively, and that these TECs were surrounded by a thickened basement membrane. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of TECs of fibrotic lesions, whereas fibronectin protein was localized in the stroma surrounding these tubules. Enzyme-linked immunosorbent assay revealed increased serum CD44 levels in CyA-treated rats. Collectively, these findings suggest that CD44 contributes to renal fibrosis by inducing fibronectin secretion in TECs exhibiting partial epithelial-mesenchymal transition and highlight the potential of CD44 as a biomarker of renal fibrosis.

3.
Front Toxicol ; 6: 1353783, 2024.
Article in English | MEDLINE | ID: mdl-38665214

ABSTRACT

Introduction: The International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH) initiated a process in 2012 to revise the S1B Guideline "Testing for Carcinogenicity of Pharmaceuticals". Previous retrospective analysis indicated the importance of histopathological risk factors in chronic toxicity studies, evidence of endocrine perturbation, and positive genetic toxicology results as potentially predictive indicators of carcinogenic risk. In addition, a relationship between pharmacodynamic activity and carcinogenicity outcome in long-term rodent studies has been reported. It was postulated that these factors could be evaluated in a Weight-of-Evidence (WoE) approach to predict the outcome of a 2-year rat study. Methods: The ICH S1B(R1) Expert Working Group (EWG) conducted a Prospective Evaluation Study (PES) to determine the regulatory feasibility of this WoE approach. Drug Regulatory Authorities (DRAs) evaluated 49 Carcinogenicity Assessment Documents (CADs), which describe the WoE for submitted pharmaceutical compounds. Each compound was categorized into a carcinogenic risk category including a statement of the value of the 2-year rat study. The outcome of the completed 2-year rat studies was evaluated in relation to the prospective CAD to determine the accuracy of predictions. Results: Based on the results of the PES, the EWG concluded that the evaluation process for assessing human carcinogenic risk of pharmaceuticals described in ICH S1B could be expanded to include a WoE approach. Approximately 27% of 2-year rat studies could be avoided in cases where DRAs and sponsors unanimously agreed that such a study would not add value. Discussion: Key factors supporting a WoE assessment were identified: data that inform carcinogenic potential based on drug target biology and the primary pharmacologic mechanism of the parent compound and major human metabolites; results from secondary pharmacology screens for this compound and major human metabolites that inform carcinogenic risk; histopathology data from repeated-dose toxicity studies; evidence for hormonal perturbation; genotoxicity data; and evidence of immune modulation. The outcome of the PES indicates that a WoE approach can be used in place of conducting a 2-year rat study for some pharmaceuticals. These data were used by the ICH S1B(R1) EWG to write the R1 Addendum to the S1B Guideline published in August 2022.

4.
Toxicol Sci ; 198(1): 40-49, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38230821

ABSTRACT

Methylcarbamate (MC), a reaction product between dimethyl dicarbonate and ammonia or ammonium ion, is a potent hepatocarcinogen in F344 rats. Various genotoxicity tests have shown negative results for MC. Although previous studies have described the effects of MC on the liver, including the formation of characteristic basophilic cytoplasmic inclusions (CIs) in hepatocytes, the toxicological significance of CIs and their involvement in hepatocarcinogenesis remain unclear. In the current study, to elucidate the mechanisms of MC hepatocarcinogenesis, we examined hepatotoxicity and genotoxicity after 4 weeks of administration of MC using gpt delta rats with an F344 genetic background as a reporter gene transgenic animal model. Histopathologically, single-cell necrosis, karyomegaly, and the formation of CIs positive for Feulgen staining were observed in hepatocytes at the carcinogenic dose, demonstrating the hepatotoxicity of MC. CIs were also detected as large micronuclei in liver micronucleus tests but not in the bone marrow, suggesting that MC could cause chromosomal instability specifically in the livers of rats. Reporter gene mutation assays demonstrated that MC did not induce mutagenicity even in the liver. Immunofluorescence analyses revealed that CIs exhibited loss of nuclear envelope integrity, increased heterochromatinization, and accumulation of DNA damage. An increase in liver STING protein levels suggested an effect on the cyclic GMP-AMP synthase/stimulator of interferon genes innate immune pathway. Overall, these data demonstrated the possible occurrence of chromothripsis-like chromosomal rearrangements via CIs. Thus, the formation of CIs could be a crucial event in the early stage of MC-induced hepatocarcinogenesis in F344 rats.


Subject(s)
Chemical and Drug Induced Liver Injury , Mutagens , Rats , Animals , Rats, Inbred F344 , Carcinogens/toxicity , Mutagenicity Tests/methods , Hepatocytes , Carcinogenesis
5.
Respir Res ; 25(1): 31, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221627

ABSTRACT

BACKGROUND: Drug-induced interstitial lung disease (DILD) is a lung injury caused by various types of drugs and is a serious problem in both clinical practice and drug development. Clinical management of the condition would be improved if there were DILD-specific biomarkers available; this study aimed to meet that need. METHODS: Biomarker candidates were identified by non-targeted metabolomics focusing on hydrophilic molecules, and further validated by targeted approaches using the serum of acute DILD patients, DILD recovery patients, DILD-tolerant patients, patients with other related lung diseases, and healthy controls. RESULTS: Serum levels of kynurenine and quinolinic acid (and kynurenine/tryptophan ratio) were elevated significantly and specifically in acute DILD patients. The diagnostic potentials of these biomarkers were superior to those of conventional lung injury biomarkers, Krebs von den Lungen-6 and surfactant protein-D, in discriminating between acute DILD patients and patients with other lung diseases, including idiopathic interstitial pneumonia and lung diseases associated with connective tissue diseases. In addition to identifying and evaluating the biomarkers, our data showed that kynurenine/tryptophan ratios (an indicator of kynurenine pathway activation) were positively correlated with serum C-reactive protein concentrations in patients with DILD, suggesting the potential association between the generation of these biomarkers and inflammation. Our in vitro experiments demonstrated that macrophage differentiation and inflammatory stimulations typified by interferon gamma could activate the kynurenine pathway, resulting in enhanced kynurenine levels in the extracellular space in macrophage-like cell lines or lung endothelial cells. Extracellular quinolinic acid levels were elevated only in macrophage-like cells but not endothelial cells owing to the lower expression levels of metabolic enzymes converting kynurenine to quinolinic acid. These findings provide clues about the molecular mechanisms behind their specific elevation in the serum of acute DILD patients. CONCLUSIONS: The serum concentrations of kynurenine and quinolinic acid as well as kynurenine/tryptophan ratios are promising and specific biomarkers for detecting and monitoring DILD and its recovery, which could facilitate accurate decisions for appropriate clinical management of patients with DILD.


Subject(s)
Lung Diseases, Interstitial , Lung Injury , Humans , Kynurenine/metabolism , Tryptophan/metabolism , Tryptophan/pharmacology , Quinolinic Acid/metabolism , Endothelial Cells/metabolism , Lung Diseases, Interstitial/chemically induced , Lung Diseases, Interstitial/diagnosis , Biomarkers
6.
J Toxicol Pathol ; 37(1): 11-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38283373

ABSTRACT

The pathogenesis of nasal cavity tumors induced in rodents has been critically reviewed. Chemical substances that induce nasal cavity tumors in rats, mice, and hamsters were searched in the National Toxicology Program (NTP), International Agency for Research on Cancer (IARC), and Japan Bioassay Research Center (JBRC) databases, in addition to PubMed. Detailed data such as animal species, administration routes, and histopathological types were extracted for induced nasal cavity tumors. Data on non-neoplastic lesions were also extracted. The relationship between the tumor type and non-neoplastic lesions at equivalent sites was analyzed to evaluate tumor pathogenesis. Genotoxicity data were also analyzed. Squamous cell carcinoma was the most frequent lesion, regardless of the dosing route, and its precursor lesions were squamous metaplasia and/or respiratory epithelial hyperplasia, similar to squamous cell papilloma. The precursor lesions of adenocarcinoma, the second most frequent tumor type, were mainly olfactory epithelial hyperplasia, whereas those of adenoma were respiratory epithelial lesions. These pathways were consistent among species. Our results suggest that the responsible lesions may be commonly linked with chemically-induced cytotoxicity in each tumor type, irrespective of genotoxicity, and that the pathways may largely overlap between genotoxic and non-genotoxic carcinogens. These findings may support the documentation of adverse outcome pathways (AOPs), such as cytotoxicity, leading to nasal cavity tumors and the integrated approaches to testing and assessment (IATA) for non-genotoxic carcinogens.

7.
J Appl Toxicol ; 44(3): 455-469, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37876353

ABSTRACT

The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.


Subject(s)
Fibronectins , Renal Insufficiency, Chronic , Animals , Rats , Allopurinol , Epithelial Cells/metabolism , Fibronectins/metabolism , Fibrosis , Hyaluronan Receptors/metabolism , Kidney , Kidney Tubules/pathology , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
8.
Cancer Sci ; 114(12): 4763-4769, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37858605

ABSTRACT

The phosphorylated form of histone H2AX (γ-H2AX) serves as a commonly utilized biomarker for DNA damage. Based on our previous findings, which demonstrated the formation of γ-H2AX foci as a reliable biomarker for detecting bladder carcinogens in repeated dose 28-day study in rats, we hypothesized that γ-H2AX could also function as a biomarker for detecting hepatocarcinogens. However, we found that γ-H2AX foci formation was not effectively induced by hepatocarcinogens that did not stimulate hepatocyte proliferation. Therefore, we explored alternative biomarkers to detect chemical hepatocarcinogenicity and discovered increased expressions of epithelial cell adhesion molecule (EpCAM/CD326)- and aminopeptidase N (APN/CD13) in the hepatocytes of rats administered various hepatocarcinogens. Significant increases in EpCAM- and APN-positive hepatocytes were observed for eight and five of the 10 hepatocarcinogens, respectively. Notably, five and two of them, respectively, were negative for γ-H2AX foci. These results highlight the potential of EpCAM and APN as useful biomarkers in combination with γ-H2AX for the detection of chemical hepatocarcinogenicity.


Subject(s)
Biomarkers , CD13 Antigens , Carcinogens , Epithelial Cell Adhesion Molecule , Phosphoproteins , Animals , Rats , Epithelial Cell Adhesion Molecule/genetics , Epithelial Cell Adhesion Molecule/metabolism , CD13 Antigens/genetics , CD13 Antigens/metabolism , Phosphoproteins/metabolism , Male , Carcinogens/analysis , Carcinogens/toxicity , Gene Expression Regulation, Neoplastic/drug effects , Biomarkers/analysis
9.
Arch Toxicol ; 97(12): 3273-3283, 2023 12.
Article in English | MEDLINE | ID: mdl-37794257

ABSTRACT

Rubiadin (Rub) is a genotoxic component of madder color (MC) that is extracted from the root of Rubia tinctorum L. MC induces renal tumors and preneoplastic lesions that are found in the proximal tubule of the outer stripe of the outer medulla (OSOM), suggesting that the renal carcinogenicity of MC is site specific. To clarify the involvement of Rub in renal carcinogenesis of MC, we examined the distribution of Rub in the kidney of male gpt delta rats that were treated with Rub for 28 days. We used desorption electrospray ionization quadrupole time-of-flight mass spectrometry imaging (DESI-Q-TOF-MSI), along with the histopathological analysis, immunohistochemical staining, and reporter gene mutation assays of the kidney. DESI-Q-TOF-MSI revealed that Rub and its metabolites, lucidin and Rub-sulfation, were specifically distributed in the OSOM. Histopathologically, karyomegaly characterized by enlarged nuclear and microvesicular vacuolar degeneration occurred in proximal tubule epithelial cells in the OSOM. The ɤ-H2AX- and p21-positive cells were also found in the OSOM rather than the cortex. Although dose-dependent increases in gpt and Spi- mutant frequencies were observed in both the medulla and cortex, the mutant frequencies in the medulla were significantly higher. The mutation spectra of gpt mutants showed that A:T-T:A transversion was predominant in Rub-induced gene mutations, consistent with those of MC. Overall, the data showed that the distribution of Rub and its metabolites resulted in site-specific histopathological changes, DNA damage, and gene mutations, suggesting that the distribution of genotoxic components and metabolites is responsible for the site-specific renal carcinogenesis of MC.


Subject(s)
DNA Damage , Kidney , Rats , Male , Animals , Rats, Inbred F344 , Kidney/pathology , Carcinogenesis
10.
Arch Toxicol ; 97(12): 3197-3207, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37773275

ABSTRACT

Although aromatic amines are widely used as raw materials for dyes, some, such as o-toluidine and o-anisidine, have shown concerning results regarding carcinogenicity in the urinary bladder. We have recently developed a short-term detection method for bladder carcinogens using immunohistochemistry for γ-H2AX, a DNA damage marker. Here, using this method, we evaluated aromatic amines with structures similar to o-toluidine and o-anisidine for bladder mucosal damage and potential carcinogenicity. In total, 17 aromatic amines were orally administered to male F344 rats for 28 days, and histopathological examination and γ-H2AX immunostaining of the urinary bladder were performed. Histopathological analysis revealed that seven aromatic amines, including 4-chloro-o-toluidine (4-CT), o-aminoazotoluene, 2-aminobenzyl alcohol (ABA), o-acetotoluidine (o-AT), 3,3'-dimethoxybenzidine, 4-aminoazobenzene (AAB), and 4,4'-methylenedianiline (MDA), induced various bladder lesions, such as hemorrhage, necrosis, and urothelial hyperplasia. The morphological characteristics of mucosal damage induced by these substances were divided into two major types: those resembling o-toluidine and those resembling o-anisidine. Six of these aromatic amines, excluding MDA, also caused significant increases in γ-H2AX formation in the bladder urothelium. Interestingly, 4-CT did not cause mucosal damage or γ-H2AX formation at the lower dose applied in previous carcinogenicity studies. These results showed for the first time that o-AT and ABA, metabolites of o-toluidine, as well as AAB caused damage to the bladder mucosa and suggested that they may be bladder carcinogens. In addition, 4-CT, which was thought to be a noncarcinogen, was found to exhibit bladder toxicity upon exposure to high doses, indicating that this compound may contribute to bladder carcinogenesis.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Rats , Animals , Male , Rats, Inbred F344 , Amines/toxicity , Urinary Bladder Neoplasms/pathology , Carcinogens/toxicity , Histones/metabolism , Phosphoproteins/metabolism
11.
Int J Mol Sci ; 24(17)2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37686053

ABSTRACT

In contrast to genotoxic carcinogens, there are currently no internationally agreed upon regulatory tools for identifying non-genotoxic carcinogens of human relevance. The rodent cancer bioassay is only used in certain regulatory sectors and is criticized for its limited predictive power for human cancer risk. Cancer is due to genetic errors occurring in single cells. The risk of cancer is higher when there is an increase in the number of errors per replication (genotoxic agents) or in the number of replications (cell proliferation-inducing agents). The default regulatory approach for genotoxic agents whereby no threshold is set is reasonably conservative. However, non-genotoxic carcinogens cannot be regulated in the same way since increased cell proliferation has a clear threshold. An integrated approach for the testing and assessment (IATA) of non-genotoxic carcinogens is under development at the OECD, considering learnings from the regulatory assessment of data-rich substances such as agrochemicals. The aim is to achieve an endorsed IATA that predicts human cancer better than the rodent cancer bioassay, using methodologies that equally or better protect human health and are superior from the view of animal welfare/efficiency. This paper describes the technical opportunities available to assess cell proliferation as the central gateway of an IATA for non-genotoxic carcinogenicity.


Subject(s)
Carcinogenesis , Carcinogens , Animals , Humans , Carcinogens/toxicity , Agrochemicals , Biological Assay , Cell Proliferation
12.
J Biol Chem ; 299(8): 105002, 2023 08.
Article in English | MEDLINE | ID: mdl-37394003

ABSTRACT

Acrylamide, a common food contaminant, is metabolically activated to glycidamide, which reacts with DNA at the N7 position of dG, forming N7-(2-carbamoyl-2-hydroxyethyl)-dG (GA7dG). Owing to its chemical lability, the mutagenic potency of GA7dG has not yet been clarified. We found that GA7dG undergoes ring-opening hydrolysis to form N6-(2-deoxy-d-erythro-pentofuranosyl)-2,6-diamino-3,4-dihydro-4-oxo-5-[N-(2-carbamoyl-2-hydroxyethyl)formamido]pyrimidine (GA-FAPy-dG), even at neutral pH. Therefore, we aimed to examine the effects of GA-FAPy-dG on the efficiency and fidelity of DNA replication using an oligonucleotide carrying GA-FAPy-9-(2-deoxy-2-fluoro-ß-d-arabinofuranosyl)guanine (dfG), a 2'-fluorine substituted analog of GA-FAPy-dG. GA-FAPy-dfG inhibited primer extension by both human replicative DNA polymerase ε and the translesion DNA synthesis polymerases (Polη, Polι, Polκ, and Polζ) and reduced the replication efficiency by less than half in human cells, with single base substitution at the site of GA-FAPy-dfG. Unlike other formamidopyrimidine derivatives, the most abundant mutation was G:C > A:T transition, which was decreased in Polκ- or REV1-KO cells. Molecular modeling suggested that a 2-carbamoyl-2-hydroxyethyl group at the N5 position of GA-FAPy-dfG can form an additional H-bond with thymidine, thereby contributing to the mutation. Collectively, our results provide further insight into the mechanisms underlying the mutagenic effects of acrylamide.


Subject(s)
DNA Adducts , Mutagens , Humans , Acrylamides , Deoxyguanosine , DNA , DNA Damage , DNA Replication , Mutagenesis , Mutagens/toxicity , Food Contamination
13.
Food Chem Toxicol ; 179: 113965, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37495168

ABSTRACT

Elemicin, an alkenylbenzene flavoring, exists naturally in foods, herbs, and spices. Some alkenylbenzenes are hepatotoxic and hepatocarcinogenic in rodents. However, few studies have examined the toxicology of elemicin. In the current study, we comprehensively evaluated the general toxicity, genotoxicity, and carcinogenicity of elemicin using gpt delta rats and DNA adductome analysis. Groups of 10 male F344 gpt delta rats were treated with elemicin by gavage at a dose of 0, 25, 100, or 400 mg/kg bw/day for 13 weeks. Liver weights were significantly increased with histopathological changes in groups receiving 100 mg/kg bw/day or more. Significant increases in serum hepatotoxic parameters were observed in the 400 mg/kg bw/day group. Based on the observed changes in liver weights, 18.6 mg/kg bw was identified as the low benchmark dose. Significant increases in the number and area of glutathione S-transferase placental form-positive foci and gpt mutant frequencies were apparent only in the 400 mg/kg/day group, although elemicin-specific DNA adducts were detected from the lowest dose, suggesting that elemicin exhibited hepatocarcinogenicity in rats only at higher doses. Because elemicin showed no mutagenicity at lower doses, there was an adequate safety margin between the acceptable daily intake and the estimated daily intake of elemicin.


Subject(s)
Flavoring Agents , Placenta , Pregnancy , Rats , Male , Female , Animals , Rats, Inbred F344 , Mutagenicity Tests
15.
Part Fibre Toxicol ; 20(1): 23, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37340415

ABSTRACT

BACKGROUND: Though titanium dioxide (TiO2) is generally considered to have a low impact in the human body, the safety of TiO2 containing nanosized particles (NPs) has attracted attention. We found that the toxicity of silver NPs markedly varied depending on their particle size, as silver NPs with a diameter of 10 nm exhibited fatal toxicity in female BALB/c mice, unlike those with diameters of 60 and 100 nm. Therefore, the toxicological effects of the smallest available TiO2 NPs with a crystallite size of 6 nm were examined in male and female F344/DuCrlCrlj rats by repeated oral administration of 10, 100, and 1000 mg/kg bw/day (5/sex/group) for 28 days and of 100, 300, and 1000 mg/kg bw/day (10/sex/group) for 90 days. RESULTS: In both 28- and 90-day studies, no mortality was observed in any group, and no treatment-related adverse effects were observed in body weight, urinalysis, hematology, serum biochemistry, or organ weight. Histopathological examination revealed TiO2 particles as depositions of yellowish-brown material. The particles observed in the gastrointestinal lumen were also found in the nasal cavity, epithelium, and stromal tissue in the 28-day study. In addition, they were observed in Peyer's patches in the ileum, cervical lymph nodes, mediastinal lymph nodes, bronchus-associated lymphoid tissue, and trachea in the 90-day study. Notably, no adverse biological responses, such as inflammation or tissue injury, were observed around the deposits. Titanium concentration analysis in the liver, kidneys, and spleen revealed that TiO2 NPs were barely absorbed and accumulated in these tissues. Immunohistochemical analysis of colonic crypts showed no extension of the proliferative cell zone or preneoplastic cytoplasmic/nuclear translocation of ß-catenin either in the male or female 1000 mg/kg bw/day group. Regarding genotoxicity, no significant increase in micronucleated or γ-H2AX positive hepatocytes was observed. Additionally, the induction of γ-H2AX was not observed at the deposition sites of yellowish-brown materials. CONCLUSIONS: No effects were observed after repeated oral administration of TiO2 with a crystallite size of 6 nm at up to 1000 mg/kg bw/day regarding general toxicity, accumulation of titanium in the liver, kidneys, and spleen, abnormality of colonic crypts, and induction of DNA strand breaks and chromosomal aberrations.


Subject(s)
Metal Nanoparticles , Nanoparticles , Mice , Humans , Rats , Male , Female , Animals , Titanium/toxicity , Metal Nanoparticles/toxicity , Silver , Rats, Inbred F344 , Nanoparticles/toxicity , Administration, Oral
16.
J Toxicol Sci ; 48(6): 323-332, 2023.
Article in English | MEDLINE | ID: mdl-37258237

ABSTRACT

We have developed an early detection method for bladder carcinogens with high sensitivity and specificity using immunohistochemistry of γ-H2AX, a well-known marker of DNA damage. To investigate the potential application of γ-H2AX as a biomarker for early detection of hepatocarcinogens, we examined γ-H2AX formation in the liver of rats treated with several different chemicals for 28 days. Six-week-old male F344 rats were orally treated for 28 days with five hepatocarcinogens: N-nitrosodiethylamine (DEN), di(2-ethylhexyl) phthalate, 1,4-dioxane (DO), 3,3'-dimethylbenzidine dihydrochloride, or thioacetamide (TAA), or with two non-hepatocarcinogens: 4-chloro-o-phenylenediamine and N-ethyl-N-nitrosourea. At the end of the treatment period, immunohistochemistry for γ-H2AX and Ki67 and expression analysis of DNA repair-related genes were performed. Significant increases in γ-H2AX-positive hepatocytes with upregulation of Rad51 mRNA expression were induced by three of five hepatocarcinogens (DEN, DO, and TAA), whereas no changes were seen for the other two hepatocarcinogens and the two non-hepatocarcinogens. Significant increases in Ki67 expression with upregulation of Brip1, Xrcc5, and Lig4 were observed in rats treated with TAA, a nongenotoxic hepatocarcinogen, suggesting that both direct DNA damage and secondary DNA damage due to cell replication stress may be associated with γ-H2AX formation. These results suggest that γ-H2AX immunostaining has potential value for early detection of hepatocarcinogens, but examination of the effects of more chemicals is needed, as is whether γ-H2AX immunostaining should be combined with other markers to increase sensitivity. γ-H2AX immunostaining using formalin-fixed paraffin-embedded specimens can be easily incorporated into existing 28-day repeated-dose toxicity studies, and further improvements in this method are expected.


Subject(s)
Carcinogenesis , Carcinogens , Rats , Male , Animals , Rats, Inbred F344 , Immunohistochemistry , Ki-67 Antigen/metabolism , Carcinogenesis/metabolism , Carcinogens/toxicity , Liver/metabolism , Thioacetamide/toxicity , Thioacetamide/metabolism , Histones/metabolism , Histones/pharmacology , Phosphoproteins/metabolism
17.
Food Chem Toxicol ; 175: 113702, 2023 May.
Article in English | MEDLINE | ID: mdl-36871879

ABSTRACT

Heme iron (HI) has been widely used as a food additive and supplement to support iron fortification. However, no sufficient toxicological data to evaluate the safety of HI have been reported. In the current study, we performed a 13-week subchronic toxicity study of HI in male and female Crl:CD(SD) rats. Rats were orally administered HI in the diet at concentrations of 0%, 0.8%, 2%, and 5%. Observations of general condition, body weight (bw) and food consumption, urinalysis, hematology, serum biochemistry, and macroscopic and histopathological examination were performed. The results showed that HI had no adverse effects on any of the examined parameters. Therefore, we concluded that the no-observed-adverse-effect level (NOAEL) for HI was estimated to be 5% for both sexes (2,890 mg/kg bw/day for males and 3,840 mg/kg bw/day for females). Since the iron content of HI used in this study was in a range of 2.0-2.6%, iron content at NOAEL for HI was calculated to be 57.8-75.1 mg/kg bw/day for males and 76.8-99.8 mg/kg bw/day for females.


Subject(s)
Food Additives , Iron , Rats , Male , Female , Animals , Rats, Sprague-Dawley , Toxicity Tests, Subchronic/methods , Food Additives/pharmacology , Iron/toxicity , Heme/toxicity , Body Weight , Organ Size , Administration, Oral
18.
Food Chem Toxicol ; 172: 113544, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36464108

ABSTRACT

The safety of flavoring agents has been evaluated according to classification by chemical structure and using a decision tree approach. The genotoxic potential found in some flavoring agents has highlighted the importance of efficient toxicity studies. We performed a comprehensive toxicity analysis using reporter gene transgenic rats to assess the safety of 3-acetyl-2,5-dimethylfuran (ADF), a flavoring agent exhibiting genotoxic potential in silico and in vitro assays. Male F344 gpt delta rats were given 0, 30, or 300 mg/kg body weight/day ADF by gavage for 13 weeks. In serum biochemistry analyses, triglyceride, total cholesterol, phospholipid, and total protein levels and albumin/globulin ratios were significantly altered in the 30 and 300 mg/kg groups. Histopathologically, nasal cavity toxicity and hepatocellular hypertrophy were observed in the 300 mg/kg group. In the livers of 300 mg/kg group, a significant increase in gpt mutant frequencies were observed along with ADF-specific DNA adduct formation. The number and area of glutathione S-transferase placental form-positive foci were significantly increased in the same group. Thus, ADF affected nasal cavity, liver, and lipid metabolism and showed genotoxicity and possible carcinogenicity in the liver. Overall, our comprehensive toxicity study using gpt delta rats provided insights into the safety evaluation of ADF.


Subject(s)
Flavoring Agents , Placenta , Pregnancy , Rats , Female , Animals , Rats, Inbred F344 , Mutagenicity Tests , Rats, Transgenic , Liver , DNA Damage
19.
J Toxicol Pathol ; 35(4): 283-298, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36406171

ABSTRACT

In safety evaluations of chemicals, there is an urgent need to develop short-term methods to replace long-term carcinogenicity tests. We have reported that immunohistochemistry for γ-H2AX, a well-established biomarker of DNA damage, can detect bladder carcinogens at an early stage using histopathological specimens from 28-day repeated-dose oral toxicity studies in rats. Given the markedly low level of γ-H2AX formation in the bladder urothelium of untreated rats, an increase in γ-H2AX-positive cells following chemical exposure can be relatively easy to identify. Among the 100 compounds examined to date, bladder carcinogens can be detected with high sensitivity (33/39; 84.6%) and specificity (58/61; 95.1%). As expected, γ-H2AX formation levels tended to be high following exposure to genotoxic bladder carcinogens, whereas nongenotoxic bladder carcinogens also increased the number of γ-H2AX-positive cells, probably through secondary DNA damage associated with sustained proliferative stimulation. γ-H2AX formation in the bladder urothelium reflects species differences in susceptibility to bladder carcinogenesis between rats and mice and shows a clear dose-dependency associated with the intensity of tumor development as well as high reproducibility. Some of the bladder carcinogens that showed false-negative results in the evaluation of γ-H2AX alone could be detected by combined evaluation with immunostaining for bladder stem cell markers, including aldehyde dehydrogenase 1A1. This method may be useful for the early detection of bladder carcinogens, as it can be performed by simple addition of conventional immunostaining using formalin-fixed paraffin-embedded tissues from 28-day repeated-dose toxicity studies in rodents, which are commonly used in safety evaluations of chemical substances.

20.
J Toxicol Sci ; 47(11): 457-466, 2022.
Article in English | MEDLINE | ID: mdl-36328536

ABSTRACT

Although both o-toluidine and o-anisidine are known as aromatic amines with bladder carcinogenicity, the specific metabolites involved in carcinogenesis are still unclear. Here, we examined the toxicological effects of head-to-tail dimers of o-toluidine and o-anisidine, 2-methyl-N4-(2-methylphenyl) benzene-1,4-diamine (MMBD) and 2-methoxy-N4-(2-methoxyphenyl) benzene-1,4-diamine (MxMxBD), respectively, in rats. Six-week-old male F344 rats were orally administered MMBD, MxMxBD, o-toluidine, and o-anisidine at a dose of 100 mg/kg/day for 28 days. Rats administered 400 mg/kg o-toluidine and 600 mg/kg/day o-anisidine were set as high-dose groups for comparison. Histopathology and immunohistochemistry for γ-H2AX, a DNA damage biomarker, and bladder stem cell markers, including aldehyde dehydrogenase 1A1 (ALDH1A1), were performed. MMBD and MxMxBD caused different toxicities than their monomers, inducing hepatotoxicity such as vacuolar degeneration but not splenic lesions due to methemoglobinemia. Bladder lesions, including urothelial hyperplasia, were observed in the high-dose o-toluidine and o-anisidine groups, whereas no obvious changes were induced in the low-dose groups or their dimers. Although γ-H2AX formation was significantly increased by o-toluidine and o-anisidine treatment, γ-H2AX formation did not differ among the MMBD, MxMxBD, and control groups. Notably, immunohistochemistry revealed marked increases in ALDH1A1 expression in the bladder urothelium of the MMBD and MxMxBD groups and in the o-toluidine and o-anisidine groups, suggesting that the two dimers may contribute to the bladder carcinogenic effects of o-toluidine and o-anisidine to some extent. The degrees of bladder lesions and γ-H2AX formation did not correlate with the amount of unchanged o-toluidine and o-anisidine in urine, indicating the presence of other metabolites responsible for these findings.


Subject(s)
Benzene , Diamines , Rats , Male , Animals , Rats, Inbred F344 , Administration, Oral
SELECTION OF CITATIONS
SEARCH DETAIL
...